Skip to main content
Log in

Natural low- and high-density lipoproteins as mighty bio-nanocarriers for anticancer drug delivery

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Lipoproteins (LPs) are a set of naturally occurring bio-nanoparticles consisting of Apo-LPs, phospholipids, a highly hydrophobic core of cholesteryl esters and triglycerides that participate mainly in the targeted transport of cholesteryl esters and other hydrophobic molecules through the bloodstream. They also are able to recognize specific receptors on normal and abnormal cells. Therefore, LPs represent a relevant tool for targeted delivery of cancer diagnostics and therapeutics due to their native biocompatibility, biodegradability, nano-scale size and receptor-mediated uptake. The circulating LPs are categorized into five classes, each with its own characteristic protein and lipid composition. Low-density LPs (LDL) and high-density LPs (HDL) are two major subclasses of LPs which were extensively subjected to attractive and versatile vehicles for targeted delivery of anticancer drugs. This study focus to highlight the potential applications of LDL and HDL bio-nanocarriers in the field of specific target drug delivery to cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khosroushahi AY, Naderi-Manesh H, Yeganeh H, Barar J, Omidi Y (2012) Novel water-soluble polyurethane nanomicelles for cancer chemotherapy: physicochemical characterization and cellular activities. Journal of nanobiotechnology 10:2. https://doi.org/10.1186/1477-3155-10-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Jelvehgari M (2017) Thermosensitive in situ nanocomposite of rivastigmine hydrogen tartrate as an intranasal delivery system: Development, characterization, ex vivo permeation and cellular studies. Colloids surfaces B Biointerfaces 159:629–638. https://doi.org/10.1016/j.colsurfb.2017.08.031

    Article  PubMed  CAS  Google Scholar 

  3. Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Kiafar F, Jelvehgari M (2017) Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Research in pharmaceutical sciences 12(1):1–14. https://doi.org/10.4103/1735-5362.199041

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jansen M, Pfaffelhuber P, Hoffmann MM, Puetz G, Winkler K (2016) In silico modeling of the dynamics of low density lipoprotein composition via a single plasma sample. Journal of lipid research 57(5):882–893. https://doi.org/10.1194/jlr.M058446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hara T, Tan Y, Huang L (1997) In vivo gene delivery to the liver using reconstituted chylomicron remnants as a novel nonviral vector. Proc Natl Acad Sci USA 94(26):14547–14552

    Article  PubMed  CAS  Google Scholar 

  6. Chung NS, Wasan KM (2004) Potential role of the low-density lipoprotein receptor family as mediators of cellular drug uptake. Advanced drug delivery reviews 56(9):1315–1334. https://doi.org/10.1016/j.addr.2003.12.003

    Article  PubMed  CAS  Google Scholar 

  7. Rensen PC, de Vrueh RL, Kuiper J, Bijsterbosch MK, Biessen EA, van Berkel TJ (2001) Recombinant lipoproteins: lipoprotein-like lipid particles for drug targeting. Advanced drug delivery reviews 47(2–3):251–276

    Article  PubMed  CAS  Google Scholar 

  8. Song L, Li H, Sunar U, Chen J, Corbin I, Yodh AG, Zheng G (2007) Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging and treatment. International journal of nanomedicine 2(4):767–774

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Skajaa T, Cormode DP, Falk E, Mulder WJ, Fisher EA, Fayad ZA (2010) High-density lipoprotein-based contrast agents for multimodal imaging of atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology 30 (2):169–176. https://doi.org/10.1161/atvbaha.108.179275

  10. Kim SH, Adhikari BB, Cruz S, Schramm MP, Vinson JA, Narayanaswami V (2015) Targeted intracellular delivery of resveratrol to glioblastoma cells using apolipoprotein E-containing reconstituted HDL as a nanovehicle. PloS one 10(8):e0135130. https://doi.org/10.1371/journal.pone.0135130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kader A, Pater A (2002) Loading anticancer drugs into HDL as well as LDL has little affect on properties of complexes and enhances cytotoxicity to human carcinoma cells. Journal of controlled release: official journal of the Controlled Release Society 80(1–3):29–44

    Article  CAS  Google Scholar 

  12. Zhang WL, Gu X, Bai H, Yang RH, Dong CD, Liu JP (2010) Nanostructured lipid carriers constituted from high-density lipoprotein components for delivery of a lipophilic cardiovascular drug. International journal of pharmaceutics 391(1–2):313–321. https://doi.org/10.1016/j.ijpharm.2010.03.011

    Article  PubMed  CAS  Google Scholar 

  13. Feng M, Cai Q, Huang H, Zhou P (2008) Liver targeting and anti-HBV activity of reconstituted HDL-acyclovir palmitate complex. European journal of pharmaceutics biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV 68(3):688–693. https://doi.org/10.1016/j.ejpb.2007.07.005

    Article  CAS  Google Scholar 

  14. Lou B, Liao XL, Wu MP, Cheng PF, Yin CY, Fei Z (2005) High-density lipoprotein as a potential carrier for delivery of a lipophilic antitumoral drug into hepatoma cells. World journal of gastroenterology 11(7):954–959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zheng G, Chen J, Li H, Glickson JD (2005) Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents. Proc Natl Acad Sci USA 102(49):17757–17762. https://doi.org/10.1073/pnas.0508677102

    Article  PubMed  CAS  Google Scholar 

  16. Zhu C, Pradhan P, Huo D, Xue J, Shen S, Roy K, Xia Y (2017) Reconstitution of Low-Density Lipoproteins with Fatty Acids for the Targeted Delivery of Drugs into Cancer Cells. Angew Chem 56(35):10399–10402. https://doi.org/10.1002/anie.201704674

    Article  CAS  Google Scholar 

  17. Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi AY (2014) Probiotic potential and biotherapeutic effects of newly isolated vaginal Lactobacillus acidophilus 36YL strain on cancer cells. Anaerobe 28:29–36. https://doi.org/10.1016/j.anaerobe.2014.04.012

    Article  PubMed  CAS  Google Scholar 

  18. Nourazarian AR, Najar AG, Farajnia S, Khosroushahi AY, Pashaei-Asl R, Omidi Y (2012) Combined EGFR and c-Src antisense oligodeoxynucleotides encapsulated with PAMAM Denderimers inhibit HT-29 colon cancer cell proliferation. Asian Pacific journal of cancer prevention: APJCP 13(9):4751–4756

    Article  PubMed  Google Scholar 

  19. Lelu S, Strand SP, Steine J, Davies Cde L (2011) Effect of PEGylation on the diffusion and stability of chitosan-DNA polyplexes in collagen gels. Biomacromol 12(10):3656–3665. https://doi.org/10.1021/bm200901s

    Article  CAS  Google Scholar 

  20. Patil AJ, Li M, Dujardin E, Mann S (2007) Novel bioinorganic nanostructures based on mesolamellar intercalation or single-molecule wrapping of DNA using organoclay building blocks. Nano letters 7(9):2660–2665. https://doi.org/10.1021/nl071052q

    Article  PubMed  CAS  Google Scholar 

  21. McConathy WJ, Paranjape S, Mooberry L, Buttreddy S, Nair M, Lacko AG (2011) Validation of the reconstituted high-density lipoprotein (rHDL) drug delivery platform using dilauryl fluorescein (DLF). Drug delivery and translational research 1 (2):113–120. https://doi.org/10.1007/s13346-010-0012-0

  22. Sag D, Cekic C, Wu R, Linden J, Hedrick CC (2015) The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nature communications 6:6354. https://doi.org/10.1038/ncomms7354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chowdhary RK, Sharif I, Chansarkar N, Dolphin D, Ratkay L, Delaney S, Meadows H (2003) Correlation of photosensitizer delivery to lipoproteins and efficacy in tumor and arthritis mouse models; comparison of lipid-based and Pluronic P123 formulations. Journal of pharmacy & pharmaceutical sciences: a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques 6 (2):198–204

  24. Salatin S, Maleki Dizaj S, Yari Khosroushahi A (2015) Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int 39(8):881–890. https://doi.org/10.1002/cbin.10459

    Article  PubMed  CAS  Google Scholar 

  25. Acton SL, Scherer PE, Lodish HF, Krieger M (1994) Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem 269(33):21003–21009

    PubMed  CAS  Google Scholar 

  26. Becker L, Webb BA, Chitayat S, Nesheim ME, Koschinsky ML (2003) A ligand-induced conformational change in apolipoprotein(a) enhances covalent Lp(a) formation. J Biol Chem 278(16):14074–14081. https://doi.org/10.1074/jbc.M212855200

    Article  PubMed  CAS  Google Scholar 

  27. Weng W, Breslow JL (1996) Dramatically decreased high density lipoprotein cholesterol, increased remnant clearance, and insulin hypersensitivity in apolipoprotein A-II knockout mice suggest a complex role for apolipoprotein A-II in atherosclerosis susceptibility. Proc Natl Acad Sci USA 93(25):14788–14794

    Article  PubMed  CAS  Google Scholar 

  28. Saballs M, Parra S, Sahun P, Pelleja J, Feliu M, Vasco C, Guma J, Borras JL, Masana L, Castro A (2016) HDL-c levels predict the presence of pleural effusion and the clinical outcome of community-acquired pneumonia. SpringerPlus 5(1):1491. https://doi.org/10.1186/s40064-016-3145-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ishikawa H, Yamada H, Taromaru N, Kondo K, Nagura A, Yamazaki M, Ando Y, Munetsuna E, Suzuki K, Ohashi K, Teradaira R (2017) Stability of serum high-density lipoprotein-microRNAs for preanalytical conditions. Annals of clinical biochemistry 54(1):134–142. https://doi.org/10.1177/0004563216647086

    Article  PubMed  CAS  Google Scholar 

  30. Sacks FM, Rudel LL, Conner A, Akeefe H, Kostner G, Baki T, Rothblat G, de la Llera-Moya M, Asztalos B, Perlman T, Zheng C, Alaupovic P, Maltais JA, Brewer HB (2009) Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo. Journal of lipid research 50(5):894–907. https://doi.org/10.1194/jlr.M800622-JLR200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yang S, Damiano MG, Zhang H, Tripathy S, Luthi AJ, Rink JS, Ugolkov AV, Singh AT, Dave SS, Gordon LI, Thaxton CS (2013) Biomimetic, synthetic HDL nanostructures for lymphoma. Proc Natl Acad Sci USA 110(7):2511–2516. https://doi.org/10.1073/pnas.1213657110

    Article  PubMed  Google Scholar 

  32. Li J, Wang J, Li M, Yin L, Li XA, Zhang TG (2016) Up-regulated expression of scavenger receptor class B type 1 (SR-B1) is associated with malignant behaviors and poor prognosis of breast cancer. Pathology research practice 212(6):555–559. https://doi.org/10.1016/j.prp.2016.03.011

    Article  CAS  Google Scholar 

  33. Schorghofer D, Kinslechner K, Preitschopf A, Schutz B, Rohrl C, Hengstschlager M,Stangl H, Mikula M (2015) The HDL receptor SR-BI is associated with human prostate cancer progression and plays a possible role in establishing androgen independence. Reproductive biology and endocrinology: RB&E 13:88. doi:10.1186/s12958-015-0087-z

  34. Gutierrez-Pajares JL, Ben Hassen C, Chevalier S, Frank PG (2016) SR-BI: Linking Cholesterol and Lipoprotein Metabolism with Breast and Prostate Cancer. Frontiers in pharmacology 7:338. https://doi.org/10.3389/fphar.2016.00338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Eberhart T, Eigner K, Filik Y, Fruhwurth S, Stangl H, Rohrl C (2016) The unfolded protein response is a negative regulator of scavenger receptor class B, type I (SR-BI) expression. Biochemical biophysical research communications 479(3):557–562. https://doi.org/10.1016/j.bbrc.2016.09.110

    Article  PubMed  CAS  Google Scholar 

  36. Oliveira CL, Santos PR, Monteiro AM, Figueiredo Neto AM (2014) Effect of oxidation on the structure of human low- and high-density lipoproteins. Biophysical journal 106(12):2595–2605. https://doi.org/10.1016/j.bpj.2014.04.049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Nichols TC, Merricks EP, Bellinger DA, Raymer RA, Yu J, Lam D, Koch GG, Busby WH Jr, Clemmons DR (2015) Oxidized LDL and Fructosamine Associated with Severity of Coronary Artery Atherosclerosis in Insulin Resistant Pigs Fed a High Fat/High NaCl Diet. PloS one 10(7):e0132302. https://doi.org/10.1371/journal.pone.0132302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Li C, Zhang J, Wu H, Li L, Yang C, Song S, Peng P, Shao M, Zhang M, Zhao J, Zhao R, Wu W, Ruan Y, Wang L, Gu J (2017) Lectin-like oxidized low-density lipoprotein receptor-1 facilitates metastasis of gastric cancer through driving epithelial-mesenchymal transition and PI3K/Akt/GSK3beta activation. Scientific reports 7:45275. https://doi.org/10.1038/srep45275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Murdocca M, Mango R, Pucci S, Biocca S, Testa B, Capuano R, Paolesse R, Sanchez M, Orlandi A, di Natale C, Novelli G, Sangiuolo F (2016) The lectin-like oxidized LDL receptor-1: a new potential molecular target in colorectal cancer. Oncotarget 7(12):14765–14780. https://doi.org/10.18632/oncotarget.7430

    Article  PubMed  PubMed Central  Google Scholar 

  40. van der Sluis RJ, Van Eck M, Hoekstra M (2015) Adrenocortical LDL receptor function negatively influences glucocorticoid output. The Journal of endocrinology 226(3):145–154. https://doi.org/10.1530/joe-15-0023

    Article  PubMed  Google Scholar 

  41. Furuya Y, Sekine Y, Kato H, Miyazawa Y, Koike H, Suzuki K (2016) Low-density lipoprotein receptors play an important role in the inhibition of prostate cancer cell proliferation by statins. Prostate international 4(2):56–60. https://doi.org/10.1016/j.prnil.2016.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bhuiyan H, Masquelier M, Tatidis L, Gruber A, Paul C, Vitols S (2017) Acute Myelogenous Leukemia Cells Secrete Factors that Stimulate Cellular LDL Uptake via Autocrine and Paracrine Mechanisms. Lipids 52(6):523–534. https://doi.org/10.1007/s11745-017-4256-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Reynolds L, Mulik RS, Wen X, Dilip A, Corbin IR (2014) Low-density lipoprotein-mediated delivery of docosahexaenoic acid selectively kills murine liver cancer cells. Nanomedicine (London England) 9(14):2123–2141. https://doi.org/10.2217/nnm.13.187

    Article  CAS  Google Scholar 

  44. Lundberg B, Suominen L (1984) Preparation of biologically active analogs of serum low density lipoprotein. Journal of lipid research 25(6):550–558

    PubMed  CAS  Google Scholar 

  45. Matz CE, Jonas A (1982) Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions. J Biol Chem 257(8):4535–4540

    PubMed  CAS  Google Scholar 

  46. Bricarello DA, Smilowitz JT, Zivkovic AM, German JB, Parikh AN (2011) Reconstituted lipoprotein: a versatile class of biologically-inspired nanostructures. ACS nano 5(1):42–57. https://doi.org/10.1021/nn103098m

    Article  PubMed  CAS  Google Scholar 

  47. Bergt C, Fu X, Huq NP, Kao J, Heinecke JW (2004) Lysine residues direct the chlorination of tyrosines in YXXK motifs of apolipoprotein A-I when hypochlorous acid oxidizes high density lipoprotein. J Biol Chem 279(9):7856–7866. https://doi.org/10.1074/jbc.M309046200

    Article  PubMed  CAS  Google Scholar 

  48. Foroozesh M, Zarrin A (2010) A Safe, Versatile and Translation-prone Strategy for Using Circulating Lipoproteins as Endogenous Drug Delivery Systems. Journal of Medical Hypotheses Ideas 4:15

    Google Scholar 

  49. Salatin S, Yari Khosroushahi A (2017) Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. Journal of cellular molecular medicine 21(9):1668–1686. https://doi.org/10.1111/jcmm.13110

    Article  PubMed  CAS  Google Scholar 

  50. Bijsterbosch MK, Manoharan M, Dorland R, Waarlo IH, Biessen EA, van Berkel TJ (2001) Delivery of cholesteryl-conjugated phosphorothioate oligodeoxynucleotides to Kupffer cells by lactosylated low-density lipoprotein. Biochemical pharmacology 62(5):627–633

    Article  PubMed  CAS  Google Scholar 

  51. Attie AD, Pittman RC, Steinberg D (1980) Metabolism of native and of lactosylated human low density lipoprotein: evidence for two pathways for catabolism of exogenous proteins in rat hepatocytes. Proc Natl Acad Sci USA 77(10):5923–5927

    Article  PubMed  CAS  Google Scholar 

  52. Hrzenjak A, Frank S, Wo X, Zhou Y, Van Berkel T, Kostner GM (2003) Galactose-specific asialoglycoprotein receptor is involved in lipoprotein (a) catabolism. The Biochemical journal 376(Pt 3):765–771. https://doi.org/10.1042/bj20030932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Thapa B, Kumar P, Zeng H, Narain R (2015) Asialoglycoprotein Receptor-Mediated Gene Delivery to Hepatocytes Using Galactosylated Polymers. Biomacromol 16(9):3008–3020. https://doi.org/10.1021/acs.biomac.5b00906

    Article  CAS  Google Scholar 

  54. Jain A, Jain K, Kesharwani P, Jain NK (2013) Low density lipoproteins mediated nanoplatforms for cancer targeting. Journal of nanoparticle research 15(9):1888

    Article  Google Scholar 

  55. Carnemolla R, Ren X, Biswas TK, Meredith SC, Reardon CA, Wang J, Getz GS (2008) The specific amino acid sequence between helices 7 and 8 influences the binding specificity of human apolipoprotein A-I for high density lipoprotein (HDL) subclasses: a potential for HDL preferential generation. J Biol Chem 283(23):15779–15788. https://doi.org/10.1074/jbc.M710244200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zhang X, Chen B (2010) Recombinant high density lipoprotein reconstituted with apolipoprotein AI cysteine mutants as delivery vehicles for 10-hydroxycamptothecin. Cancer letters 298(1):26–33. https://doi.org/10.1016/j.canlet.2010.05.023

    Article  PubMed  CAS  Google Scholar 

  57. Yuan Y, Wen J, Tang J, Kan Q, Ackermann R, Olsen K, Schwendeman A (2016) Synthetic high-density lipoproteins for delivery of 10-hydroxycamptothecin. International journal of nanomedicine 11:6229–6238. https://doi.org/10.2147/ijn.s112835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Murakami T, Wijagkanalan W, Hashida M, Tsuchida K (2010) Intracellular drug delivery by genetically engineered high-density lipoprotein nanoparticles. Nanomedicine (London England) 5(6):867–879. https://doi.org/10.2217/nnm.10.66

    Article  CAS  Google Scholar 

  59. McMahon KM, Scielzo C, Angeloni NL, Deiss-Yehiely E, Scarfo L, Ranghetti P, Ma S, Kaplan J, Barbaglio F, Gordon LI, Giles FJ, Thaxton CS, Ghia P (2017) Synthetic high-density lipoproteins as targeted monotherapy for chronic lymphocytic leukemia. Oncotarget 8(7):11219–11227. https://doi.org/10.18632/oncotarget.14494

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang F, Wang X, Xu X, Li M, Zhou J, Wang W (2016) Reconstituted high density lipoprotein mediated targeted co-delivery of HZ08 and paclitaxel enhances the efficacy of paclitaxel in multidrug-resistant MCF-7 breast cancer cells. Eur J Pharm Sci 92:11–21

    Article  PubMed  CAS  Google Scholar 

  61. Subramanian C, Kuai R, Zhu Q, White P, Moon JJ, Schwendeman A, Cohen MS (2016) Synthetic high-density lipoprotein nanoparticles: A novel therapeutic strategy for adrenocortical carcinomas. Surgery 159(1):284–294. https://doi.org/10.1016/j.surg.2015.08.023

    Article  PubMed  Google Scholar 

  62. Murakami T, Okamoto H, Kim H (2015) Structural and functional changes in high-density lipoprotein induced by chemical modification. Biomaterials science 3(5):712–715. https://doi.org/10.1039/c4bm00402g

    Article  PubMed  CAS  Google Scholar 

  63. Bijsterbosch MK, Van Berkel TJ (1992) Lactosylated high density lipoprotein: a potential carrier for the site-specific delivery of drugs to parenchymal liver cells. Molecular pharmacology 41(2):404–411

    PubMed  CAS  Google Scholar 

  64. Bijsterbosch MK, van de Bilt H, van Berkel TJ (1996) Specific targeting of a lipophilic prodrug of iododeoxyuridine to parenchymal liver cells using lactosylated reconstituted high density lipoprotein particles. Biochemical pharmacology 52(1):113–121

    Article  PubMed  CAS  Google Scholar 

  65. Chen W, Jarzyna PA, van Tilborg GA, Nguyen VA, Cormode DP, Klink A, Griffioen AW, Randolph GJ, Fisher EA, Mulder WJ, Fayad ZA (2010) RGD peptide functionalized and reconstituted high-density lipoprotein nanoparticles as a versatile and multimodal tumor targeting molecular imaging probe. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 24(6):1689–1699. https://doi.org/10.1096/fj.09-139865

    Article  CAS  Google Scholar 

  66. Liu L, He H, Zhang M, Zhang S, Zhang W, Liu J (2014) Hyaluronic acid-decorated reconstituted high density lipoprotein targeting atherosclerotic lesions. Biomaterials 35(27):8002–8014. https://doi.org/10.1016/j.biomaterials.2014.05.081

    Article  PubMed  CAS  Google Scholar 

  67. Angeloni NL, McMahon KM, Swaminathan S, Plebanek MP, Osman I, Volpert OV, Thaxton CS (2016) Pathways for Modulating Exosome Lipids Identified By High-Density Lipoprotein-Like Nanoparticle Binding to Scavenger Receptor Type B-1. Scientific reports 6:22915. https://doi.org/10.1038/srep22915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Shin JY, Yang Y, Heo P, Lee JC, Kong B, Cho JY, Yoon K, Shin CS, Seo JH, Kim SG, Kweon DH (2012) pH-responsive high-density lipoprotein-like nanoparticles to release paclitaxel at acidic pH in cancer chemotherapy. International journal of nanomedicine 7:2805–2816. https://doi.org/10.2147/ijn.s29817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Baillie G, Owens MD, Halbert GW (2002) A synthetic low density lipoprotein particle capable of supporting U937 proliferation in vitro. Journal of lipid research 43(1):69–73

    PubMed  CAS  Google Scholar 

  70. Nikanjam M, Gibbs AR, Hunt CA, Budinger TF, Forte TM (2007) Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme. Journal of controlled release: official journal of the Controlled Release Society 124(3):163–171. https://doi.org/10.1016/j.jconrel.2007.09.007

    Article  CAS  Google Scholar 

  71. Joniova J, Blascakova L, Jancura D, Nadova Z, Sureau F, Miskovsky P Incorporation of photosenzitizer hypericin into synthetic lipid-based nano-particles for drug delivery and large unilamellar vesicles with different content of cholesterol. SPIE NanoScience + Engineering, 2014. International Society for Optics and Photonics, 916604-916604-916612

  72. Su HT, Li X, Liang DS, Qi XR (2016) Synthetic low-density lipoprotein (sLDL) selectively delivers paclitaxel to tumor with low systemic toxicity. Oncotarget 7(32):51535–51552. https://doi.org/10.18632/oncotarget.10493

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chen J, Corbin IR, Li H, Cao W, Glickson JD, Zheng G (2007) Ligand conjugated low-density lipoprotein nanoparticles for enhanced optical cancer imaging in vivo. J Am Chem Soc 129(18):5798–5799. https://doi.org/10.1021/ja069336k

    Article  PubMed  CAS  Google Scholar 

  74. Zuo L, Li L, Wang Q, Fleming TP, You S (2009) Mammaglobin as a potential molecular target for breast cancer drug delivery. Cancer cell international 9:8. https://doi.org/10.1186/1475-2867-9-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Tauchi Y, Zushida L, Chono S, Sato J, Ito K, Morimoto K (2001) Effect of dexamethasone palmitate-low density lipoprotein complex on cholesterol ester accumulation in aorta of atherogenic model mice. Biological pharmaceutical bulletin 24(8):925–929

    Article  PubMed  CAS  Google Scholar 

  76. Pussinen PJ, Lindner H, Glatter O, Reicher H, Kostner GM, Wintersperger A, Malle E, Sattler W (2000) Lipoprotein-associated alpha-tocopheryl-succinate inhibits cell growth and induces apoptosis in human MCF-7 and HBL-100 breast cancer cells. Biochimica et biophysica acta 1485(2–3):129–144

    Article  PubMed  CAS  Google Scholar 

  77. Masquelier M, Vitols S, Peterson C (1986) Low-density lipoprotein as a carrier of antitumoral drugs: in vivo fate of drug-human low-density lipoprotein complexes in mice. Cancer research 46(8):3842–3847

    PubMed  CAS  Google Scholar 

  78. Samadi-Baboli M, Favre G, Canal P, Soula G (1993) Low density lipoprotein for cytotoxic drug targeting: improved activity of elliptinium derivative against B16 melanoma in mice. British journal of cancer 68(2):319–326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Hu J, Liu H, Wang L (2000) Enhanced delivery of AZT to macrophages via acetylated LDL. Journal of controlled release: official journal of the Controlled Release Society 69(3):327–335

    Article  CAS  Google Scholar 

  80. Mooberry LK, Nair M, Paranjape S, McConathy WJ, Lacko AG (2010) Receptor mediated uptake of paclitaxel from a synthetic high density lipoprotein nanocarrier. Journal of drug targeting 18(1):53–58. https://doi.org/10.3109/10611860903156419

    Article  PubMed  CAS  Google Scholar 

  81. McConathy WJ, Nair MP, Paranjape S, Mooberry L, Lacko AG (2008) Evaluation of synthetic/reconstituted high-density lipoproteins as delivery vehicles for paclitaxel. Anti-cancer drugs 19(2):183–188. https://doi.org/10.1097/CAD.0b013e3282f1da86

    Article  PubMed  CAS  Google Scholar 

  82. Lacko AG, Nair M, Paranjape S, Johnso S, McConathy WJ (2002) High density lipoprotein complexes as delivery vehicles for anticancer drugs. Anticancer research 22(4):2045–2049

    PubMed  CAS  Google Scholar 

  83. Corbin IR, Ng KK, Ding L, Jurisicova A, Zheng G (2013) Near-infrared fluorescent imaging of metastatic ovarian cancer using folate receptor-targeted high-density lipoprotein nanocarriers. Nanomedicine (London England) 8(6):875–890. https://doi.org/10.2217/nnm.12.137

    Article  CAS  Google Scholar 

  84. Jain A, Jain K, Mehra NK, Jain N (2013) Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells. Journal of nanoparticle research 15(10):2003

    Article  CAS  Google Scholar 

  85. Kader A, Pater A (2002) Loading anticancer drugs into HDL as well as LDL has little affect on properties of complexes and enhances cytotoxicity to human carcinoma cells. Journal of controlled release 80(1):29–44

    Article  PubMed  CAS  Google Scholar 

  86. Bijsterbosch MK, Van Berkel TJ (1990) Uptake of lactosylated low-density lipoprotein by galactose-specific receptors in rat liver. The Biochemical journal 270(1):233–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Schouten D, van der Kooij M, Muller J, Pieters MN, Bijsterbosch MK, van Berkel TJ (1993) Development of lipoprotein-like lipid particles for drug targeting: neo-high density lipoproteins. Molecular pharmacology 44(2):486–492

    PubMed  CAS  Google Scholar 

  88. Rensen PC, van Leeuwen SH, Sliedregt LA, van Berkel TJ, Biessen EA (2004) Design and synthesis of novel N-acetylgalactosamine-terminated glycolipids for targeting of lipoproteins to the hepatic asialoglycoprotein receptor. Journal of medicinal chemistry 47(23):5798–5808. https://doi.org/10.1021/jm049481d

    Article  PubMed  CAS  Google Scholar 

  89. Shafi S, Cusack N, Born G (1989) Increased uptake of methylated low-density lipoprotein induced by noradrenaline in carotid arteries of anaesthetized rabbits. Proceedings of the Royal Society of London B: Biological Sciences 235 (1281):289–298

  90. Martín-Fuentes P, Civeira F, Recalde D, García-Otín AL, Jarauta E, Marzo I, Cenarro A (2007) Individual variation of scavenger receptor expression in human macrophages with oxidized low-density lipoprotein is associated with a differential inflammatory response. J Immunol 179(5):3242–3248

    Article  PubMed  Google Scholar 

  91. Gillotte-Taylor K, Boullier A, Witztum JL, Steinberg D, Quehenberger O (2001) Scavenger receptor class B type I as a receptor for oxidized low density lipoprotein. Journal of lipid research 42(9):1474–1482

    PubMed  CAS  Google Scholar 

  92. Jinnouchi Y, Sano H, Nagai R, Hakamata H, Kodama T, Suzuki H, Yoshida M, Ueda S, Horiuchi S (1998) Glycolaldehyde-modified low density lipoprotein leads macrophages to foam cells via the macrophage scavenger receptor. Journal of biochemistry 123(6):1208–1217

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Yari Khosroushahi.

Ethics declarations

Ethical issues

No ethical issues to be promulgated.

Conflict of interest

The authors declare that there are no conflicts of interests.

Research involving human participants and/or animals

The submitted manuscript is review and there are no human participants and/or animals.

Informed consent

The submitted manuscript is review and there are no human participants and/or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudian, M., Salatin, S. & Khosroushahi, A.Y. Natural low- and high-density lipoproteins as mighty bio-nanocarriers for anticancer drug delivery. Cancer Chemother Pharmacol 82, 371–382 (2018). https://doi.org/10.1007/s00280-018-3626-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-018-3626-4

Keywords

Navigation