Skip to main content

Advertisement

Log in

Assessment of cabozantinib treatment on QT interval in a phase 3 study in medullary thyroid cancer: evaluation of indirect QT effects mediated through treatment-induced changes in serum electrolytes

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

This study evaluated factors impacting QTc interval in a phase 3 trial of cabozantinib in progressive, metastatic, medullary thyroid cancer (MTC).

Methods

Electrocardiogram (12-lead ECG) measurements were obtained at screening, and at pre-dose, and 2, 4, and 6 h post-dose on Days 1 and 29 in a phase 3 study in patients with MTC treated with cabozantinib (140 mg/day). Central tendency analyses were conducted on baseline-corrected QTc values. Linear and nonlinear mixed-effects models were used to evaluate potential factors affecting the QTc interval, including serum electrolytes, patient demographics, and cabozantinib concentration.

Results

Central tendency analysis showed that oral cabozantinib (140 mg/day) produced a 10–15 ms increase in delta–delta Fridericia corrected QT (∆∆QTcF) and delta–delta study-specific corrected QT (∆∆QTcS) on Day 29, but not on Day 1. Further analysis showed that QTcS provided a slightly more accurate QT correction than QTcF. Mixed-effects models evaluating serum electrolytes, age, sex, and cabozantinib concentration showed that decreased serum calcium and potassium could explain the majority of cabozantinib treatment-associated QTcS prolongation observed in this study.

Conclusions

Cabozantinib treatment prolongs the ∆∆QTcF interval by 10–15 ms. There was the absence of a strong relationship between cabozantinib concentration and QTcS prolongation. Cabozantinib treatment effects on serum calcium and potassium best explain the QTcS prolongation observed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Guideline IHT (2005) The clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs E14. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002879.pdf. Accessed 30 Dec 2016

  2. Yap YG, Camm AJ (2003) Drug induced QT prolongation and torsades de pointes. Heart 89(11):1363–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Haverkamp W, Breithardt G, Camm AJ, Janse MJ, Rosen MR, Antzelevitch C, Escande D, Franz M, Malik M, Moss A (2000) The potential for QT prolongation and pro-arrhythmia by non-anti-arrhythmic drugs: clinical and regulatory implications. Cardiovasc Res 47(2):219–233

    Article  CAS  PubMed  Google Scholar 

  4. Grant AO (2009) Cardiac ion channels. Circ Arrhythm Electrophysiol 2(2):185–194. doi:10.1161/CIRCEP.108.789081

    Article  PubMed  Google Scholar 

  5. Strevel EL, Ing DJ, Siu LL (2007) Molecularly targeted oncology therapeutics and prolongation of the QT interval. J Clin Oncol 25(22):3362–3371. doi:10.1200/JCO.2006.09.6925

    Article  CAS  PubMed  Google Scholar 

  6. Brell JM (2010) Prolonged QTc interval in cancer therapeutic drug development: defining arrhythmic risk in malignancy. Prog Cardiovasc Dis 53(2):164–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Curigliano G, Spitaleri G, De Braud F, Cardinale D, Cipolla C, Civelli M, Colombo N, Colombo A, Locatelli M, Goldhirsch A (2009) QTc prolongation assessment in anticancer drug development: clinical and methodological issues. ecancermedicalscience 3:130

  8. Salvi V, Karnad DR, Panicker GK, Kothari S (2010) Update on the evaluation of a new drug for effects on cardiac repolarization in humans: issues in early drug development. Br J Pharmacol 159(1):34–48

    Article  PubMed  Google Scholar 

  9. Sarapa N, Britto MR (2008) Challenges of characterizing proarrhythmic risk due to QTc prolongation induced by nonadjuvant anticancer agents. Expert Opin Drug Saf 7(3):305–318

    Article  CAS  PubMed  Google Scholar 

  10. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, Qian F, Chu F, Bentzien F, Cancilla B (2011) Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 10(12):2298–2308

    Article  CAS  PubMed  Google Scholar 

  11. Capp C, Wajner SM, Siqueira DR, Brasil BA, Meurer L, Maia AL (2010) Increased expression of vascular endothelial growth factor and its receptors, VEGFR-1 and VEGFR-2, in medullary thyroid carcinoma. Thyroid 20(8):863–871

    Article  CAS  PubMed  Google Scholar 

  12. Cassinelli G, Favini E, Degl’Innocenti D, Salvi A, De Petro G, Pierotti MA, Zunino F, Borrello MG, Lanzi C (2009) RET/PTC1-driven neoplastic transformation and proinvasive phenotype of human thyrocytes involve Met induction and β-catenin nuclear translocation. Neoplasia 11(1):10–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carlomagno F, Vitagliano D, Guida T, Ciardiello F, Tortora G, Vecchio G, Ryan AJ, Fontanini G, Fusco A, Santoro M (2002) ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Can Res 62(24):7284–7290

    CAS  Google Scholar 

  14. COMETRIQ(R) [package insert] (2016) Exelixis Inc., South San Francisco. http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/203756s002lbl.pdf. Accessed 30 Dec 2016

  15. US Food and Drug Administration CfDEaR (2012) Approval package for application number 203756Orig1s000 for cabozantinib (COMETRIQ(R)). Clin Pharmacol Biopharm Rev(s). http://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/203756Orig1s000ClinPharmR.pdf. Accessed 30 Dec 2016

  16. Miles D, Jumbe NL, Lacy S, Nguyen L (2016) Population pharmacokinetic model of cabozantinib in patients with medullary thyroid carcinoma and its application to an exposure-response analysis. Clin Pharmacokinet 55(1):93–105. doi:10.1007/s40262-015-0295-x

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen L, Holland J, Miles D, Engel C, Benrimoh N, O’Reilly T, Lacy S (2015) Pharmacokinetic (PK) drug interaction studies of cabozantinib: effect of CYP3A inducer rifampin and inhibitor ketoconazole on cabozantinib plasma PK and effect of cabozantinib on CYP2C8 probe substrate rosiglitazone plasma PK. J Clin Pharmacol 55(9):1012–1023. doi:10.1002/jcph.510

    Article  CAS  PubMed  Google Scholar 

  18. Nguyen L, Holland J, Mamelok R, Laberge MK, Grenier J, Swearingen D, Armas D, Lacy S (2015) Evaluation of the effect of food and gastric pH on the single-dose pharmacokinetics of cabozantinib in healthy adult subjects. J Clin Pharmacol 55(11):1293–1302. doi:10.1002/jcph.526

    Article  CAS  PubMed  Google Scholar 

  19. Lacy SA, Miles DR, Nguyen LT (2017) Clinical pharmacokinetics and pharmacodynamics of cabozantinib. Clin Pharmacokinet. 56(5):477–491. doi:10.1007/s40262-016-0461-9

    Article  PubMed  Google Scholar 

  20. Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: hERG encodes the IKr potassium channel. Cell 81(2):299–307

    Article  CAS  PubMed  Google Scholar 

  21. Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440(7083):463–469. doi:10.1038/nature04710

    Article  CAS  PubMed  Google Scholar 

  22. Wible BA, Hawryluk P, Ficker E, Kuryshev YA, Kirsch G, Brown AM (2005) HERG-Lite: a novel comprehensive high-throughput screen for drug-induced hERG risk. J Pharmacol Toxicol Methods 52(1):136–145. doi:10.1016/j.vascn.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  23. Kiehn J, Lacerda AE, Wible B, Brown AM (1996) Molecular physiology and pharmacology of HERG single-channel currents and block by dofetilide. Circulation 94(10):2572–2579

    Article  CAS  PubMed  Google Scholar 

  24. Mohammad S, Zhou Z, Gong Q, January CT (1997) Blockage of the HERG human cardiac K + channel by the gastrointestinal prokinetic agent cisapride. Am J Physiol-Heart Circ Physiol 273(5):H2534–H2538

    CAS  Google Scholar 

  25. Danker T, Moller C (2014) Early identification of hERG liability in drug discovery programs by automated patch clamp. Front Pharmacol 5:203. doi:10.3389/fphar.2014.00203

    Article  PubMed  PubMed Central  Google Scholar 

  26. US Food and Drug Administration CfDEaR (2012) Approval package for application number 203756Orig1s000 for cabozantinib (COMETRIQ(R)). Pharmacol Rev. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/203756Orig1s000PharmR.pdf. Accessed 30 Dec 2016

  27. US Food and Drug Administration CfDEaR (2005) Guidance for industry: E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm073153.pdf. Accessed 30 Dec 2016

  28. Bello CL, Mulay M, Huang X, Patyna S, Dinolfo M, Levine S, Van Vugt A, Toh M, Baum C, Rosen L (2009) Electrocardiographic characterization of the QTc interval in patients with advanced solid tumors: pharmacokinetic- pharmacodynamic evaluation of sunitinib. Clin Cancer Res 15(22):7045–7052. doi:10.1158/1078-0432.CCR-09-1521

    Article  CAS  PubMed  Google Scholar 

  29. Sonnichsen D, Dorer DJ, Cortes J, Talpaz M, Deininger MW, Shah NP, Kantarjian HM, Bixby D, Mauro MJ, Flinn IW, Litwin J, Turner CD, Haluska FG (2013) Analysis of the potential effect of ponatinib on the QTc interval in patients with refractory hematological malignancies. Cancer Chemother Pharmacol 71(6):1599–1607. doi:10.1007/s00280-013-2160-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Elisei R, Schlumberger MJ, Müller SP, Schöffski P, Brose MS, Shah MH, Licitra L, Jarzab B, Medvedev V, Kreissl MC (2013) Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 31(29):3639–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Genovesi S, Dossi C, Vigano MR, Galbiati E, Prolo F, Stella A, Stramba-Badiale M (2008) Electrolyte concentration during haemodialysis and QT interval prolongation in uraemic patients. Europace 10(6):771–777. doi:10.1093/europace/eun028

    Article  PubMed  Google Scholar 

  32. Hosmane B, Locke C, Morris D (2006) QT interval correction for heart rate. J Appl Res Clin Exp Ther 6(4):288–299

    Google Scholar 

  33. Tornøe CW, Garnett CE, Wang Y, Florian J, Li M, Gobburu JV (2011) Creation of a knowledge management system for QT analyses. J Clin Pharmacol 51(7):1035–1042

    Article  PubMed  Google Scholar 

  34. Honig PK, Wortham DC, Zamani K, Conner DP, Mullin JC, Cantilena LR (1993) Terfenadine-ketoconazole interaction: pharmacokinetic and electrocardiographic consequences. JAMA 269(12):1513–1518

    Article  CAS  PubMed  Google Scholar 

  35. Afshinnia F, Doshi H, Rao PS (2012) The effect of different dialysate magnesium concentrations on QTc dispersion in hemodialysis patients. Ren Fail 34(4):408–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Garnett CE, Zhu H, Malik M, Fossa AA, Zhang J, Badilini F, Li J, Darpo B, Sager P, Rodriguez I (2012) Methodologies to characterize the QT/corrected QT interval in the presence of drug-induced heart rate changes or other autonomic effects. Am Heart J 163(6):912–930. doi:10.1016/j.ahj.2012.02.023

    Article  PubMed  Google Scholar 

  37. Malik M, Färbom P, Batchvarov V, Hnatkova K, Camm A (2002) Relation between QT and RR intervals is highly individual among healthy subjects: implications for heart rate correction of the QT interval. Heart 87(3):220–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Batchvarov VN, Ghuran A, Smetana P, Hnatkova K, Harries M, Dilaveris P, Camm AJ, Malik M (2002) QT-RR relationship in healthy subjects exhibits substantial intersubject variability and high intrasubject stability. Am J Physiol-Heart Circ Physiol 282(6):H2356–H2363

    Article  CAS  PubMed  Google Scholar 

  39. Ghatalia P, Je Y, Kaymakcalan M, Sonpavde G, Choueiri T (2015) QTc interval prolongation with vascular endothelial growth factor receptor tyrosine kinase inhibitors. Br J Cancer 112(2):296–305

    Article  CAS  PubMed  Google Scholar 

  40. US Food and Drug Administration CfDEaR (August 2010) Application number 022405Orig1s000 for vandetanib (CAPRELSA(R)). Pharmacol Rev(s). http://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/022405Orig1s000PharmR.pdf. Accessed 30 Dec 2016

  41. Chau NG, Haddad RI (2013) Vandetanib for the treatment of medullary thyroid cancer. Clin Cancer Res 19(3):524–529. doi:10.1158/1078-0432.CCR-12-2353

    Article  CAS  PubMed  Google Scholar 

  42. ICLUSIG(R) [package insert] (2016) ARIAD Pharmaceuticals Inc., Cambridge. http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/203469s022lbl.pdf. Accessed 30 Dec 2016

  43. PROLIA(R) [summary of product characteristics] (2017) AMGEN LIMITED, Cambridge, http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002173/WC500110381.pdf. Accessed 29 Apr 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Lacy.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest and source of funding

These analyses were funded by Exelixis, Inc. Steve Lacy and Steve Milwee are full-time employees and stockholders of Exelixis Inc. Dale Miles, Yifah Yaron, and Linh Nguyen were full-time employees and stockholders of Exelixis, Inc. when the work was performed. Dale Miles is currently employed Genentech Inc. and Linh Nguyen is currently employed by Pfizer Inc. David Russ Wada is a full-time employee of Certara, which was contracted to perform some analyses.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 692 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miles, D.R., Lacy, S.A., Wada, D.R. et al. Assessment of cabozantinib treatment on QT interval in a phase 3 study in medullary thyroid cancer: evaluation of indirect QT effects mediated through treatment-induced changes in serum electrolytes. Cancer Chemother Pharmacol 80, 295–306 (2017). https://doi.org/10.1007/s00280-017-3349-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-017-3349-y

Keywords

Navigation