Skip to main content

Advertisement

Log in

Endometrial cancer: redefining the molecular-targeted approach

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Endometrial cancer (EC) is the most frequent gynecologic malignancy in the world. Metastatic and recurrent disease confers a worse prognosis, and the side effects of the current cytotoxic agents are the main cause of treatment disruption. Recently, the genetic alterations that facilitate the start, development and progression of EC have been elucidated, reclassifying the disease in distinct subtypes with different mechanisms of carcinogenesis. Targeted therapy aims to interfere specifically these mechanisms causing less toxicity, therefore opening new perspectives for a tailored treatment and improvement of response and survival rates for heavily treated recurrent disease. Treatment with hormone therapy was not addressed in this review because it is an extensively discussed issue and would divert the discussion about molecular-targeted therapy. The purpose of this paper was to review the available literature data regarding the main genetic abnormalities related to the carcinogenesis and evaluate the safety and efficacy of the molecular-targeted agents in the treatment of metastatic and recurrent EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EC:

Endometrial cancer

GOG:

Gynecologic Oncology Group

HNPCC:

Hereditary non-polyposis colorectal carcinoma

References

  1. Ries LAG, Melbert D, Krapcho M et al (2014) SEER cancer statistics review, 1975–2014. National Cancer Institute; Bethesda, MD. http://seer.cancer.gov/statfacts/html/corp.html, based on November 2013 SEER data submission, posted to the SEER web site

  2. Doll A, Abal M, Rigau M et al (2008) Novel molecular profiles of endometrial cancer new light through hold windows. J Steroid Biochem Mol Biol 108(3–5):221–229

    Article  CAS  PubMed  Google Scholar 

  3. Bokhman JV (1983) Two pathogenetic types of endometrial carcinoma. Gynecol Oncol 15(1):10–17

    Article  CAS  PubMed  Google Scholar 

  4. Ambros RA, Sherman ME, Zahn CM, Bitterman P, Kurman RJ (1995) Endometrial intraepithelial carcinoma: a distinctive lesion specifically associated with tumors displaying serous differentiation. Hum Pathol 26:1260–1267

    Article  CAS  PubMed  Google Scholar 

  5. Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497(7447):67–73

    Article  PubMed  Google Scholar 

  6. Aggarwal P, Kehoe S (2010) Serum tumour markers in gynaecological cancers. Maturitas 67:46–53

    Article  CAS  PubMed  Google Scholar 

  7. Hecht Jonathan L, Mutter George L (2006) Molecular and pathologic aspects of endometrial carcinogenesis. J Clin Oncol 24(29):4783–4791

    Article  CAS  PubMed  Google Scholar 

  8. Thoury A, Descatoire V, Kotelevets L, Kannengiesser C, Bertrand G, Theou-Anton N, Frey C, Genestie C, Raymond E, Chastre E, Lehy T, Walker F (2014) Evidence for different expression profiles for c-Met, EGFR, PTEN and the mTOR pathway in low and high grade endometrial carcinomas in a cohort of consecutive women. Occurrence of PIK3CA and K-Ras mutations and microsatellite instability. Histol Histopathol 29(11):1455–1466

  9. Heinen CD (2014) Translating mismatch repair mechanism into cancer care. Curr Drug Targ 15:53–64

    Article  Google Scholar 

  10. Caduff RF, Johnston CM, Svoboda-Newman SM, Poy EL, Merajver SD, Frank TS (1996) Clinical and pathological significance of microsatellite instability in sporadic endometrial carcinoma. Am J Pathol 148:1671–1678

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Esteller M, Levine R, Baylin SB, Ellenson LH, Herman JG (1998) MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene 17:2413–2417

    Article  CAS  PubMed  Google Scholar 

  12. Swisher EM, Mutch DG, Herzog TJ et al (1998) Analysis of MSH3 in endometrial cancers with defective DNA mismatch repair. J Soc Gynecol Investig 5:210–216

    Article  CAS  PubMed  Google Scholar 

  13. Bilbao C, Rodrıguez G, Ramırez R, Falcon O, Leon L, Chirino R, Rivero JF et al (2006) The relationship between microsatellite instability and PTEN gene mutations in endometrial cancer. Int J Cancer 119:563–570

    Article  CAS  PubMed  Google Scholar 

  14. Cohn DE, Basil JB, Venegoni AR et al (2000) Absence of PTEN repeat tract mutation in endome- microsatellite instability. Gynecol Oncol 79:101–106

    Article  CAS  PubMed  Google Scholar 

  15. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561

    Article  CAS  PubMed  Google Scholar 

  16. Jernvall P, Makinen MJ, Karttunen TJ, Makela J, Vihko P (1999) Microsatellite instability impact on cancer progression in proximal and distal colorectal cancers. Eur J Cancer 35:197–201

    Article  CAS  PubMed  Google Scholar 

  17. Johannsdottir JT, Bergthorsson JT, Gretarsdottir S, Kristjans-son AK, Ragnarsson G, Jonasson JG et al (1999) Replication error in colorectal carcinoma: association with loss of heterozygosity at mismatch repair loci and clinicopathological variables. Anticancer Res 19:1821–1826

    CAS  PubMed  Google Scholar 

  18. Catasus L, Machin P, Matias-Guiu X, Prat J (1998) Microsatellite instability in endometrial carcinomas: clinicopathologic correlations in a series of 42 cases. Hum Path 29:1160–1164

    Article  CAS  PubMed  Google Scholar 

  19. Miller D, Filiaci V, Fleming G et al (2012) Randomized phase III noninferiority trial of first line chemotherapy for metastatic or recurrent endometrial carcinoma: a gynecologic oncology group study. Gynecol Oncol 125:771–773

    Article  Google Scholar 

  20. Mutter GL (2001) PTEN, a protean tumor suppressor. Am J Pathol 158:1895–1898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Mutter GL, Lin MC et al (2000) Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Nat Can Inst 92:11

    Article  Google Scholar 

  22. Tashiro H, Blazes MS, Wu R, Cho KR, Bose S, Wang SI et al (1997) Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res 57:3935–3940

    CAS  PubMed  Google Scholar 

  23. Risinger JI, Hayes AK, Berchuck A, Barrett JC (1997) PTEN/MMAC1 mutations in endometrial cancers. Cancer Res 57:4736–4738

    CAS  PubMed  Google Scholar 

  24. Pavlidou A, Vlahos NF (2014) Molecular Alterations of PI3K/Akt/mTOR pathway: a therapeutic target in endometrial cancer. Sci World J, Art id 709736

  25. Urick ME, Rudd ML, Godwin AK, Sgroi D, Merino M, Bell DW (2011) PIK3R1 (p85a) is somatically mutated at high frequency in primary endometrial cancer. Can Resear 71(12):4061–4067

    Article  CAS  Google Scholar 

  26. Cheung LW et al (2011) High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov 2:170–185

    Article  Google Scholar 

  27. Slomovitz BM, Lu KH, Johnston T et al (2010) A phase 2 study of the oral mammalian target of rapamycin inhibitor, everolimus, in patients with recurrent endometrial carcinoma. Cancer 116(23):5415–5419

    Article  CAS  PubMed  Google Scholar 

  28. Kim DH, Sarbassov DD, Ali SM et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110(2):163–175

    Article  CAS  PubMed  Google Scholar 

  29. Shoji K, Oda K, Nakagawa S et al (2009) The oncogenic mutation in the pleckstrin homology domain of AKT1 in endometrial carcinomas. Br J Cancer 101(1):145–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Swisher EM, Peiffer-Schneider S, Mutch DG et al (1999) Differences in patterns of TP53 and KRAS2 mutations in a large series of endometrial carcinomas with or without microsatellite instability. Cancer 85:119–126

    Article  CAS  PubMed  Google Scholar 

  31. Lax SF, Kendall B, Tashiro H et al (2000) The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways. Cancer 88:814–824

    Article  CAS  PubMed  Google Scholar 

  32. Lagarda H et al (2001) K-ras mutations in endometrial carcinomas with microsatellite instability. J Path 193(2):193–199

    Article  CAS  PubMed  Google Scholar 

  33. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16(13):3797–3804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Bailey T, Biddlestone L, Shepherd N, Barr H, Warner P, Jankowski J (1998) Altered cadherin and catenin complexes in the Barrett’s esophagus-dysplasia-adenocarcinoma sequence: correlation with disease progression and dedifferentiation. Am J Pathol 152(1):135–144

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Wirtz R, Kuhl M, Wedlich D, Birchmeier W (1998) Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280:596–599

    Article  PubMed  Google Scholar 

  36. Kim YT, Choi EK, Kim JW et al (2002) Expression of E-cadherin and alpha-, beta-, gamma-catenin proteins in endometrial carcinoma. Yonsei Med J 43:701–711

    Article  CAS  PubMed  Google Scholar 

  37. Shih HC, Shiozawa T, Miyamoto T et al (2004) Immunohistochemical expression of E-cadherin and beta-catenin in the normal and malignant human endometrium: an inverse correlation between E-cadherin and nuclear beta-catenin expression. Anticancer Res 24:3843–3850

    CAS  PubMed  Google Scholar 

  38. Shtutman M, Zhurinsky J, Simcha I et al (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96:5522–5527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Oehler MK, Brand A, Wain GV (2003) Molecular genetics and endometrial cancer. J Br Menopause 3:27–31

    Article  Google Scholar 

  40. Katoh M (2008) Cancer genomics and genetics of FGFR2 (Review). Int J Oncol 33:233–237

    CAS  PubMed  Google Scholar 

  41. Byron SA, Gartside MG, Wellens CL et al (2008) Inhibition of activated fibroblast growth factor receptor 2 in endometrial cancer cells induces cell death despite PTEN abrogation. Cancer Res 68:6902

    Article  CAS  PubMed  Google Scholar 

  42. Dutt A, Salvesen HB, Chen TH et al (2008) Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc Natl Acad Sci USA 105:8713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Gatius S, Velasco A, Azueta A, Santacana M et al (2011) FGFR2 alterations in endometrial carcinoma. Modern Path 24:1500–1510

    Article  CAS  Google Scholar 

  44. Macdonald ND, Salvesen HB, Ryan A, Malatos S, Stefansson I, Iversen OE et al (2004) Molecular differences between RER + and RER- sporadic endometrial carcinomas in a large population-based series. Int J Gynecol Cancer 14:957–965

    Article  CAS  PubMed  Google Scholar 

  45. Risinger JI, Maxwell GL, Berchuck A, Barrett JC (2003) Promoter hypermethylation as an epigenetic component in Type I and Type II endometrial cancers. Ann N Y Acad Sci 983:208–212

    Article  CAS  PubMed  Google Scholar 

  46. Niederacher D, An HX, Cho YJ, Hantschmann P, Bender HG, Beckmann MW (1999) Mutations and amplification of oncogenes in endometrial cancer. Oncology 56:59–65

    Article  CAS  PubMed  Google Scholar 

  47. Saffari B, Jones LA, El-Naggar A, Felix JC, George J, Press MF (1995) Amplification and overexpression of HER-2/neu (c-erbB2) in endome- trial cancers: correlation with overall survival. Cancer Res 55:5693–5698

    CAS  PubMed  Google Scholar 

  48. Vasen HF, Watson P, Mecklin JP et al (1994) The epidemiology of endometrial cancer in hereditary nonpolyposis colorectal cancer. Anticancer Res 14:1675–1678

    CAS  PubMed  Google Scholar 

  49. Peltomaki P, Vasen HF, The International Collaborative Group on HNPCC (1997) Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. Gastroenterology 113:1146–1158

    Article  CAS  PubMed  Google Scholar 

  50. Williams JA Jr, Wang ZR, Parrish RS, Hazlett LJ, Smith ST, Young SR (1999) Fluorescence in situ hybridization analysis of HER-2/neu, c-myc, and p53 in endometrial cancer. Exp Mol Pathol 67:135–143

    Article  CAS  PubMed  Google Scholar 

  51. Chon HS, Hu W, Kavanagh JJ (2006) Targeted therapies in gynecologic cancers. Curr Cancer Drug Targets 4:333–363

    Article  Google Scholar 

  52. Miyaki M, Konishi M, Tanaka K et al (1997) Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 17:271–272

    Article  CAS  PubMed  Google Scholar 

  53. Schweizer P, Moisio AL, Kuismanen SA et al (2001) Lack of MSH2 and MSH6 characterizes endometrial but not colon carcinomas in hereditary nonpolyposis colorectal cancer. Cancer Res 61:2813–2815

    CAS  PubMed  Google Scholar 

  54. Parc YR, Halling KC, Burgart LJ et al (2000) Microsatellite instability and hMLH1/hMSH2 expression in young endometrial carcinoma patients: association with family history and histopathology. Int J Cancer 86:60–66

    Article  CAS  PubMed  Google Scholar 

  55. De Leeuw WJ, Dierssen J, Vasen HF et al (2000) Prediction of a mismatch repair gene defect by microsatellite instability and immunohistochemical analysis in endometrial tumors from HNPCC patients. J Pathol 192:328–335

    Article  PubMed  Google Scholar 

  56. Sandles LG (1998) Familial endometrial adenocarcinoma. Clin Obstet Gynecol 41:167–171

    Article  CAS  PubMed  Google Scholar 

  57. Ollikainen M, Abdel-Rahman WM, Moisio AL et al (2005) Molecular analysis of familial endometrial carcinoma: a manifestation of hereditary nonpolyposis colorectal cancer or a separate syndrome? J Clin Oncol 23:4609–4616

    Article  CAS  PubMed  Google Scholar 

  58. Aghajanian C, Sill MW, Darcy KM et al (2011) Phase II trial of bevacizumab in recurrent or persistent endometrial cancer: a gynecologic oncology group study. J Clin Oncol 29:2259–2265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. National Cancer Institute (2000) Paclitaxel, Carboplatin, and Bevacizumab or Paclitaxel, Carboplatin, and Temsirolimus or Ixabepilone, Carboplatin, and Bevacizumab in treating patients with stage III, Stage IV, or Recurrent Endometrial Cancer. Bethesda (MD): National Library of Medicine (US). http://clinicaltrials.gov/show/NCT00977574 NLM identifier: NCT 00977574

  60. Coleman RL, Sill MW, Lankes HA et al (2012) A phase II evaluation of aflibercept in the treatment of recurrent or persistent endometrial cancer: a gynecologic oncology group study. Gynecol Oncol 127:538–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. McMeekin DS, Sill MW, Benbrook D et al (2007) A phase II trial of thalidomide in patients with refractory endometrial cancer and correlation with angiogenesis biomarkers: a gynecologic oncology group study. Gynecol Oncol 105:508–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Castonguay V, Lheureux S, Welch S, Mackay HJ et al (2014) A phase II trial of sunitinib in women with metastatic or recurrent endometrial carcinoma: a study of the Princess Margaret, Chicago and California Consortia. Gynecol Oncol 134:274–280

    Article  CAS  PubMed  Google Scholar 

  63. Oza AM, Eisenhauer EA, Elit L, Cutz JC, Sakurada A et al (2008) Phase II study of erlotinib in recurrent or metastatic endometrial cancer: NCIC-148. J Clin Oncol 26:4319–4432

    Article  CAS  PubMed  Google Scholar 

  64. Leslie KK, Sill MW, Darcy KM et al (2009) Efficacy and safety of gefitinib and potential prognostic value of soluble EGFR, EGFR mutations, and tumor markers in a Gynecologic Oncology Group phase II trial of persistent or recurrent endometrial cancer. J Clin Oncol 27:e16542

    Google Scholar 

  65. Santin AD, Bellone S, Roman JJ, McKenney JK, Pecorelli S (2008) Trastuzumab treatment in patients with advanced or recurrent endometrial carcinoma overexpressing HER2/neu. Int J Gynaecol Obstet 102(2):128–131

    Article  CAS  PubMed  Google Scholar 

  66. Jewell E, Secord AA, Brotherton T, Berchuck A (2006) Use of trastuzumab in the treatment of metastatic endometrial cancer. Int J Gynecol Cancer 16(3):1370–1373

    Article  CAS  PubMed  Google Scholar 

  67. Villella JA, Cohen S, Smith DH, Hibshoosh H, Hershman D (2006) HER-2/neu overexpression in uterine papillary serous cancers and its possible therapeutic implications. Int J Gynecol Cancer 16(5):1897–1902

    Article  CAS  PubMed  Google Scholar 

  68. Fleming GF, Sill MW, Darcy KM, McMeekin DS, Thigpen JT, Adler LM et al (2010) Phase II trial of trastuzumab in women with advanced or recurrent, HER2-positive endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 116(1):15–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. El-Sahwi K, Bellone S, Cocco E, Cargnelutti M, Casagrande F, Bellone M et al (2010) In vitro activity of pertuzumab in combination with trastuzumab in uterine serous papillary adenocarcinoma. Br J Cancer 102(1):134–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Leslie KK, Sill MW, Lankes HA, Fischer EG, Godwin AK, Gray H et al (2012) Lapatinib and potential prognostic value of EGFR mutations in a Gynecologic Oncology Groupphase II trial of persistent or recurrent endometrial cancer. Gynecol Oncol 127(2):345–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Schwab CL, English DP, Roque DM, Bellone S et al (2014) Neratinib shows efficacy in the treatment of HER2/neu amplified uterine serous carcinoma in vitro and in vivo. Gynec Oncol 135:142–148

    Article  CAS  Google Scholar 

  72. Oza AM, Elit L, Provencher D et al (2008) A phase II study of temsirolimus (CCI-779) in patients with metastatic and/or locally advanced recurrent endometrial cancer previously treated with chemotherapy: NCIC CTG IND 160 b. J Clin Oncol 26:e5516

    Article  Google Scholar 

  73. Rachel RA, Jamal R, Tu D, Walsh W, Dancey J et al (2013) Clinical and toxicity predictors of response and progression to temsirolimus in women with recurrent or metastatic endometrial cancer. Gynec Oncol 131:315–320

    Article  Google Scholar 

  74. Alvarez EA, Brady WE, Walker JL, Rotmensch J, Zhou XC, Kendrick JE (2013) Phase II trial of combination bevacizumab and temsirolimus in the treatment of recurrent or persistent endometrial carcinoma: a gynecologic oncology group study. Gynecol Oncol 129:22–27

    Article  CAS  PubMed  Google Scholar 

  75. Boers-Sonderen MJ, Geus-Oei LF, Desar IME, Van der Graaf WTA, Oyen WJG (2014) Temsirolimus and pegylated liposomal doxorubicin (PLD) combination therapy in breast, endometrial, and ovarian cancer: phase Ib results and prediction of clinical outcome with FDG-PET/CT. Target Oncol 9(4):339–347

    Article  PubMed  Google Scholar 

  76. Fleming GF, Filiaci VL, Marzullo B, Zaino RJ, Davidson AS, Pearl M (2014) Temsirolimus with or without megestrol acetate and tamoxifen for endometrial cancer: a gynecologic oncology group study. Gynec Oncol 132:585–592

    Article  CAS  Google Scholar 

  77. Colombo N, McMeekin S, Schwartz P et al (2007) A phase II trial of the mTOR inhibitor AP23573 as a single agent in advanced endometrial cancer. J Clin Oncol 25:5516

    Google Scholar 

  78. Tsoref D, Welch S, Lau S, Biagi J, Tonkin K, Lee Ann Martin LA (2014) Phase II study of oral ridaforolimus in women with recurrent or metastatic endometrial cancer. Gynecol Oncol 135(2):184–189

    Article  CAS  PubMed  Google Scholar 

  79. Zakikhani M, Blouin MJ, Piura E, Pollak MN (2010) Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat 123(1):271–279

    Article  CAS  PubMed  Google Scholar 

  80. Ko EM, Walter P, Jackson A, Clarkd L, Franasiak J et al (2014) Metformin is associated with improved survival in endometrial cancer. Gynecol Oncol 132:438–442

    Article  CAS  PubMed  Google Scholar 

  81. M.D. Anderson Cancer Center (2000) A phase II, single-arm study of RAD001 (Everolimus), Letrozole, and Metformin in patients with advanced or recurrent endometrial carcinoma. In: ClinicalTrials.gov [internet]. Bethesda (MD): National Library of Medicine (US). https://clinicaltrials.gov/ct2/show/study/NCT01797523 NLM identifier: NCT01797523

  82. Gynecologic Oncology Group (2000) Paclitaxel and carboplatin with or without metformin hydrochloride in treating patients with stage III, IV, or Recurrent Endometrial Cancer. In: ClinicalTrials.gov [internet]. Bethesda (MD): National Library of Medicine (US). https://clinicaltrials.gov/ct2/show/study/NCT02065687 NLM identifier: NCT02065687

  83. Novartis Pharmaceuticals (2000) BKM120 as second-line therapy for advanced endometrial cancer. In: ClinicalTrials.gov [internet]. Bethesda (MD): National Library of Medicine (US). http://clinicaltrials.gov/show/NCT01289041 NLM identifier: NCT 01289041

  84. Sanofi (2000) Study of XL147 (SAR245408) in Advanced or recurrent endometrial cancer. In: ClinicalTrials.gov [internet]. Bethesda (MD): National Library of Medicine (US). http://clinicaltrials.gov/show/NCT01013324 NLM identifier: NCT 01013324

  85. Ursula M, Ignace V, Floor B, Lainie PM, Scott M, Michael B, Frank C, Yi X, Coumaran E, Sharad G (2014) Phase II study of the PI3K inhibitor pilaralisib (SAR245408; XL147) in patients with advanced or recurrent endometrial carcinoma. Gynecol Oncol. doi:10.1016/j.ygyno.2014.12.019

    Google Scholar 

  86. National Cancer Institute (2000) Akt Inhibitor MK2206 in treating patients with recurrent or advanced endometrial cancer. In: ClinicalTrials.gov [internet]. Bethesda (MD): National Library of Medicine (US). http://clinicaltrials.gov/show/NCT01307631 NLM identifier: NCT 01307631

  87. Konecny GE, Kolarova T, O’Brien NA, Winterhoff B, Yang G et al (2013) Activity of the fibroblast growth factor receptor inhibitors dovitinib (TKI258) and NVP-BGJ398 in human endometrial cancer cells. Mol Cancer Ther 12(5):632–642

    Article  CAS  PubMed  Google Scholar 

  88. Gozgit JM, Squillace RM, Wongchenko MJ, Miller D et al (2013) Combined targeting of FGFR2 and mTOR by ponatinib and ridaforolimus results in synergistic antitumor activity in FGFR2 mutant endometrial cancer models. Cancer Chemother Pharmacol 71:1315–1323

    Article  CAS  PubMed  Google Scholar 

  89. Abstract LBA27—Phase 2 study of second-line dovitinib (TKI258) in patients with fibroblast growth factor receptor 2 (FGFR2)-mutated or –non-mutated advanced and/or metastatic endometrial cancer

  90. Powell MA, Sill MW, Goodfellow PJ, Benbrook DM, Lankes HA, Leslie KK et al (2014) A phase II trial of brivanib in recurrent or persistent endometrial cancer: an NRG Oncology/Gynecologic Oncology Group Study. Gynecol Oncol 135:38–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Dizon DS, Michael Sill MW, Schilder JM, McGonigle KF, Rahman Z et al (2014) A phase II evaluation of nintedanib (BIBF-1120) in the treatment of recurrent or persistent endometrial cancer: an NRG Oncology/Gynecologic Oncology Group Study. Gynec Oncol 135:441–445

    Article  CAS  Google Scholar 

  92. Wallin JJ, Edgar KA, Guan J, Berry M, PriorWW Lee L et al (2011) GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Mol Cancer Ther 10:2426–2436

    Article  CAS  PubMed  Google Scholar 

  93. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C et al (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7:1851–1863

    Article  CAS  PubMed  Google Scholar 

  94. Shoji K, Oda K, Nakagawa S, Ikeda Y, Kuramoto H, Nishida M et al (2010) Activity of dual PI3K/mTOR inhibitor, NVP-BEZ235, and mTOR inhibitor, RAD001 (everolimus), in endometrial cancer cell lines [abstract]. J Clin Oncol 28:15s (supp abstr 5074)

  95. Genentech, Inc. (2000) A study of GDC-0980 in the treatment of recurrent or persistent endometrial carcinoma. In: ClinicalTrials.gov [internet]. Bethesda (MD): National Library of Medicine (US). http://clinicaltrials.gov/show/NCT01455493 NLM identifier: NCT01455493

  96. Trope C, Johnsson JE, Simonsen E, Christiansen H, Cavallin-Stahl E, Horvath G (1984) Treatment of recurrent endometrial adenocarcinoma with a combination of doxorubicin and cisplatin. Am J Obstet Gynecol 149:379–381

    Article  CAS  PubMed  Google Scholar 

  97. Van Wijk FH, Aapro MS, van Wijk FH, Bolis G et al (2003) Doxorubicin versus doxorubicin and cisplatin in endometrial carcinoma: definitive results of a randomised study (55872) by the EORTC Gynaecological Cancer Group. Ann Oncol 14:441–448

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Lopes da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.L., Paulino, E., Dias, M.F. et al. Endometrial cancer: redefining the molecular-targeted approach. Cancer Chemother Pharmacol 76, 1–11 (2015). https://doi.org/10.1007/s00280-015-2758-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2758-z

Keywords

Navigation