Skip to main content
Log in

Polyamine catabolism in colorectal cancer cells following treatment with oxaliplatin, 5-fluorouracil and N 1 , N 11 diethylnorspermine

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Our previous studies showed that combined treatment of oxaliplatin and N 1 , N 11diethyl-norspermine (DENSPM) results in massive induction of spermidine/spermine N 1-acetyltransferase (SSAT) mRNA and activity. Since oxaliplatin and 5-fluorouracil (5FU) are used clinically in treatment of colorectal cancers, this study examines the effect of adding DENSPM to oxaliplatin/5FU combination on SSAT and spermine oxidase (SMO) in HCT-116 cells.

Methods

HCT-116 cells were treated with clinically relevant concentrations of drugs for 20 h followed by 24 h in drug free medium. SSAT and SMO mRNA and protein were assayed by QRT-PCR and Westerns respectively; polyamine pools were measured by HPLC. SSAT and SMO mRNA in tumor biopsies from patients with rectal cancer receiving oxaliplatin, capecitabine and radiation were measured by QRT-PCR.

Results

Oxaliplatin + 5FU + DENSPM produced significantly higher levels of SSAT and SMO mRNA, protein and activity than those seen with oxaliplatin+5FU with a significant depletion of cellular spermine and spermidine pools. Oxaliplatin/DENSPM was superior to 5FU/DENSPM in SSAT induction but similar for SMO. Oxaliplatin + DENSPM revealed synergistic growth inhibition at >IC50 concentrations and antagonism at <IC50. SMO and SSAT induction occurred in 60 and 30% of the patient samples examined.

Conclusions

These studies demonstrated that combining DENSPM with oxaliplatin + 5FU provides an added benefit by aiming at the clinically relevant therapeutic target, the polyamine catabolism. Further, we show for the first time, that SMO and SSAT induction could be measured in tumor biopsies in patients receiving chemo-radiation. Optimization of treatment conditions in vivo should facilitate a clinical evaluation of the three drug combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DENSPM:

N 1 N 11-Diethylnorspermine

ERCC-1:

Excision cross-complementing gene-1

5FU:

5-Fluorouracil

dUMP:

Deoxyuridine monophosphate

Pt:

Platinum

Put:

Putrescine

QRT-PCR:

Quantitative RT-PCR

Spd:

Spermidine

Spm:

Spermine

SSAT:

Spermidine/spermine N 1-acetyltransferase (also known as SSAT-1)

SMO:

Spermine oxidase

SRB:

Sulforhodamine-B

TMP:

Thymidine monophosphosphate

TP:

Thymidine phosphorylase

TS:

Thymidylate synthase

FdUMP:

5-Fluorouridine monophosphate

References

  1. Abeloff MD, Rosen ST, Luk GD, Baylin SB, Zeltzman M, Sjoerdsma A (1986) Phase II trials of a-difluoromethylornithine, an inhibitor of polyamine synthesis in advanced small cell lung cancer and colon cancer. Cancer Treat Rep 70:843–845

    PubMed  CAS  Google Scholar 

  2. Alhonen L, Pietila M, Halmekyto M, Kramer DL, Janne J, Porter CW (1999) Transgenic mice with activated polyamine catabolism due to overexpression of spermidine/spermine N1-acetyltransferase show enhanced sensitivity to the polyamine analog, N1, N11-diethylnorspermine. Mol Pharmacol 55:693–698

    PubMed  CAS  Google Scholar 

  3. Allen WL, McLean EG, Boyer J, McCulla A, Wilson PM, Coyle V, Longley DB, Casero RA Jr, Johnston PG (2007) The role of spermidine/spermine N1-acetyltransferase in determining response to chemotherapeutic agents in colorectal cancer cells. Mol Cancer Ther 6:128–137

    Article  PubMed  CAS  Google Scholar 

  4. Boyer J, Allen WL, McLean EG, Wilson PM, McCulla A, Moore S, Longley DB, Caldas C, Johnston PG (2006) Pharmacogenomic identification of novel determinants of response to chemotherapy in colon cancer. Cancer Res 66:2765–2777

    Article  PubMed  CAS  Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 52:5115–5118

    Google Scholar 

  6. Casero RA Jr, Wang Y, Stewart TM, Devereux W, Hacker A, Wang Y, Smith R, Woster PM (2003) The role of polyamine catabolism in anti-tumour drug response. Biochem Soc Trans 31:361–365

    Article  PubMed  CAS  Google Scholar 

  7. Chen Y, Kramer D, Jell J, Vujcic S, Porer CW (2003) siRNA suppression of polyamine analogue-induced spermidine/spermine N1-acetyltransferase. Mol Pharmacol 64:1153–1159

    Article  PubMed  CAS  Google Scholar 

  8. Chen Y, Kramer DL, Diegelman P, Vujcic S, Porter CW (2001) Apoptotic signaling in polyamine analogue-treated SK-MEL-28 human melanoma cells. Can Res 61:6437–6444

    CAS  Google Scholar 

  9. Choi W, Gerner EW, Ramdas L, Dupart J, Carew J, Proctor L, Huang P, Zhang W, Hamilton SR (2004) Combination of 5-fluorouracil and N1,N11-diethylnorspermine markedly activates spermidine/spermine N1-acetyltransferase expression, depletes polyamines, and synergistically induces apoptosis in colon carcinoma cells. J Biol Chem 280:3295–3304

    Article  PubMed  Google Scholar 

  10. Choi W, Proctor L, Xia Q, Feng Y, Gerner EW, Chiao PJ, Hamilton SR, Zhang W (2006) Inactivation of IkappaB contributes to transcriptional activation of spermidine/spermine N(1)-acetyltransferase. Mol Carcinog 45:685–693

    Article  PubMed  CAS  Google Scholar 

  11. Coleman CS, Pegg AE (2001) Polyamine analogues inhibit the ubiquitination of spermidine/spermine N1-acetyltransferase and prevent its targeting to the proteasome for degradation. Biochem J 358:137–145

    Article  PubMed  CAS  Google Scholar 

  12. Creaven PJ, Pendyala L, Perez R, Meropol NJ, Loewen GM, Levine E, Berghorn E, Raghavan D (1995) Phase I study of N1N11diethylnorsperimine a polyamine analog in advanced cancer. Proc Am Assoc Clin Oncol 14:472

    Google Scholar 

  13. Faessel HM, Slocum HK, Jackson RC, Boritzki TJ, Rustum YM, Nair MG, Greco WR (1998) Super in vitro synergy between inhibitors of dihydrofolate reductase and inhibitors of other folate-requiring enzymes: the critical role of polyglutamylation. Cancer Res 58:3036–3050

    PubMed  CAS  Google Scholar 

  14. Faessel HM, Slocum HK, Rustum YM, Greco WR (1999) Folic acid-enhanced synergy for the combination of trimetrexate plus the glycinamide ribonucleotide formyltransferase inhibitor 4-[2-(2-amino-4-oxo-4,6,7,8-tetrahydro-3H-pyrimidino[5,4,6][1,4]thiazin-6-yl)-(S)-ethyl]-2,5-thienoylamino-L-glutamic acid (AG2034): comparison across sensitive and resistant human tumor cell lines. Biochem Pharmacol 57:567–577

    Article  PubMed  CAS  Google Scholar 

  15. Fakih MG, Rajput A, Yang GY, Pendyala L, Toth K, Smith JL, Lawrence DD, Rustum YM (2006) A Phase I study of weekly intravenous oxaliplatin in combination with oral daily capecitabine and radiation therapy in the neoadjuvant treatment of rectal adenocarcinoma. Int J Radiat Oncol Biol Phys 65:1462–1470

    PubMed  CAS  Google Scholar 

  16. Feuerstein BG, Williams LD, Basu HS, Marton LJ (1991) Implications and concepts of polyamine-nucleic acid interactions. [Review] [60 refs]. J Cell Biochem 46:37–47

    Article  PubMed  CAS  Google Scholar 

  17. Gessner PK (1974) A straight forward method for the study of drug interactions. In: Morselli PI, Garattini S, Cohen SN (eds) Drug interactions. Raven Press, New York, pp 349–362

    Google Scholar 

  18. Hahm HA, Ettinger DS, Bowling K, Hoker B, Chen TL, Zabelina Y, Casero RAJ (2002) Phase I study of N1,N11-diethylnorspermine in patients with non-small cell lung cancer. Clin Cancer Res 8:684–690

    PubMed  CAS  Google Scholar 

  19. Hawthorne TR, Austin JKJ (1996) Synergism of the polyamine analogue, N1,N11-bisethylnorspermine with cis-diaminedichloroplatinum (II) against murine neoplastic cell lines in vitro and in vivo. Cancer Lett 99:99–107

    Article  PubMed  CAS  Google Scholar 

  20. Hector S, Hawthorn L, Greco W, Pendyala L (2002) Gene expression profiles after oxaliplatin treatment in A2780 ovarian carcinoma cells. Proc Am Assoc Cancer Res 43:62

    Google Scholar 

  21. Hector S, Porter CW, Kramer DL, Clark K, Prey J, Kiesel N, Diegelman P, Chen Y, Pendyala L (2004) Polyamine catabolism in platinum drug action: interactions between oxaliplatin and the polyamine analogue N 1 , N 11-diethylnorspermine at the level of spermidine/spermine N 1-acetylransferase. Mol Cancer Ther 3:813–822

    PubMed  CAS  Google Scholar 

  22. Hector S, Porter CW, Kramer DL, Prey J, Pendyala L (2005) Spermidine/spermine N1-acetyltransferase as a determinant of oxaliplatin drug action and resistance. Proc Am Assoc Cancer Res 46:323

    Google Scholar 

  23. Hector S, Bolanowska-Higdon W, Zdanowicz J, Hitt S, Pendyala L (2001) In vitro studies on the mechanisms of oxaliplatin resistance. Cancer Chemother Pharmacol 48:398–406

    Article  PubMed  CAS  Google Scholar 

  24. Ichimura S, Menoi M, Mita K, Fukuchi K, Hamana K (2004) Accumulation of spermidine/spermine N1-acetyltransferase and alternatively spliced mRNA as a delayed response of HeLa S3 cells following X-ray irradiation. Int J Radiat Biol 80:369–375

    Article  PubMed  Google Scholar 

  25. Johnson MR, Wang KS, Smith JB, Heslin MJ, Diasio RB (2000) Quantitation of dihydropyrimidine dehydrogenase expression by real-time reverse transcription polymerase chain reaction. Anal Biochem 278:175–184

    Article  PubMed  CAS  Google Scholar 

  26. Maxwell P, Longley DB, Latif T, Boyer J, Allen W, Lynch M, McDermott U, Harkin D, Allegra CJ, Johnston PG (2003) Identification of 5-fluorouracil-inducible target genes using cDNA microarray profiling. Can Res 63:4602–4606

    CAS  Google Scholar 

  27. Minchin RF, Knight S, Arulpragasam A, Fogel-Petrovic M (2006) Concentration-dependent effects of N1, N11-diethylnorspermine on melanoma cell proliferation. Int J Cancer 118:509–512

    Article  PubMed  CAS  Google Scholar 

  28. Paliwal J, Janumpalli G, Basu HS (1998) The mechanism of polyamine analog-induced enhancement of cisplatin cytotoxicity in the U-251 MG human malignant glioma cell line. Cancer Chemother Pharmacol 41:398–402

    Article  PubMed  CAS  Google Scholar 

  29. Parry L, Balana FR, Pegg AE (1995) Post-transcriptional regulation of the content of spermidine/spermine N1-acetyltransferase by N1N12-bis(ethyl)spermine. Biochem J 305(Pt 2):451–458

    PubMed  CAS  Google Scholar 

  30. Pizzorno G, Diasio RB, Cheng Y-C (2006) Pyrimidine and purine antimetabolites. In: Kufe DW, Bast RC Jr, Hait WN, Hong WK, Pollock RE, Weichselbaum RC, Holland JF, Frei E III (eds) Cancer medicine. 7. BC Decker, London, pp 661–674

  31. Pledgie A, Huang Y, Hacker A, Zhang Z, Woster PM, Davidson NE, Casero RAJ (2002) Spermine oxidase SMO(PAOh1), Not N1-acetylpolyamine oxidase PAO, is the primary source of cytotoxic H2O2 in polyamine analogue-treated human breast cancer cell lines. J Biol Chem 280:39843–39851

    Article  Google Scholar 

  32. Porter C, Herrera-Omelas L, Pera P, Petrelli NF, Mittleman A (1987) Polyamine biosynthetic activity in normal and neoplastic human colorectal tissues. Cancer 60:1275–1281

    Article  PubMed  CAS  Google Scholar 

  33. Rixie O, Ortuzar W, Alvarez M, Parker R, Reed E, Paull K, Fojo T (1996) Oxaliplatin, tetraplatin, cisplatin and carboplatin: Spectrum of activity in drug-resistant cell lines and in the cell lines of the National Cancer Institute’s anticancer drug screen panel. Biochem Pharmacol 52:1855–1865

    Article  Google Scholar 

  34. Streiff RR, Bender JF (2001) Phase 1 study of N1-N11-diethylnorspermine (DENSPM) administered TID for 6 days in patients with advanced malignancies. Invest New Drugs 19:29–39

    Article  PubMed  CAS  Google Scholar 

  35. Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 58:244–258

    Article  PubMed  CAS  Google Scholar 

  36. Tummala R, Porter CW, Diegelman P, Vujcic S, Clark K, Prey J, Kisiel N, Kramer DL, Pendyala L (2007) Platinum drug effects on polyamine enzymes in A2780 human ovarian carcinoma cells. Proc Am Assoc Cancer Res 48:365

    Google Scholar 

  37. Varma R, Hector S, Greco WR, Clark K, Hawthorn L, Porter C, Pendyala L (2007) Platinum drug effects on the expression of genes in the polyamine pathway: time-course and concentration-effect analysis based on Affymetrix gene expression profiling of A2780 ovarian carcinoma cells. Cancer Chemother Pharmacol 59:711–723

    Article  PubMed  CAS  Google Scholar 

  38. Vujcic S, Diegelman P, Bacchi CJ, Kramer DL, Porter CW (2002) Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin. Biochem J 367:665–675

    Article  PubMed  CAS  Google Scholar 

  39. Vujcic S, Halmekyto M, Diegelman P, Gan G, Kramer DL, Janne J, Porter CW (2000) Effects of conditional overexpression of spermidine/spermine N1-acetyltransferase on polyamine pool dynamics, cell growth, and sensitivity to polyamine analogs. J Biol Chem 275:38319–38328

    Article  PubMed  CAS  Google Scholar 

  40. Wiseman LR, Adkins JC, Plosker GL, Goa K (1999) Oxaliplatin. A review of its use in the management of metastatic colorectal cancer. Drugs Aging 14:459–475

    Article  PubMed  CAS  Google Scholar 

  41. Wolff AC, Armstrong DK, Fetting JH, Carducci MK, Riley CD, Bender JF, Casero RAJ, Davidson NE (2001) A Phase II study of the polyamine analog N1,N11-diethylnorspermine (DENSpm) daily for five days every 21 days in patients with previously treated metastatic breast cancer. Clin Cancer Res 9:5922–5928

    Google Scholar 

  42. Zhang W, Ramdas L, Shen W, Song SW, Hu L, Hamilton SR (2003) Apoptotic response to 5-fluorouracil treatment is mediated by reduced polyamines, non-autocrine Fas ligand and induced tumor necrosis factor receptor 2. Cancer Biol Ther 2:572–578

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NCICA109619. Gene expression analysis in tumor biopsies was carried out through other sources. We acknowledge the support of NCI Comprehensive Cancer Center grant CA10656 for the Core Facility usage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Pendyala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hector, S., Tummala, R., Kisiel, N.D. et al. Polyamine catabolism in colorectal cancer cells following treatment with oxaliplatin, 5-fluorouracil and N 1 , N 11 diethylnorspermine. Cancer Chemother Pharmacol 62, 517–527 (2008). https://doi.org/10.1007/s00280-007-0633-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-007-0633-2

Keywords

Navigation