Skip to main content

Advertisement

Log in

Structural development of synthetic retinoids and thalidomide-related molecules

  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

The full-scale commercial appearance of antibiotics in the 1950s caused a shift in the nature of lethal diseases from infectious and acute to noninfectious and chronic. In this situation, biological response modifiers (BRMs), which are not based on selective toxicity, could be expected to be useful. Several types of BRM exist, including retinoids, which act directly on cells at the level of gene expression, and thalidomide and related molecules, which modulate the production of various cytokines. We have been engaged in medicinal, chemical, and structural development studies based on these bioactive compounds. Retinoids include all-trans-retinoic acid (ATRA), a major active form of vitamin A (retinol), and its bioisosters, which elicit their biological effects by binding to their nuclear receptors, retinoic acid receptors (RARs). ATRA has been used in differentiation therapy, typically for the treatment of acute promyelocytic leukemia, and the treatment of dermatological diseases. Our structural development studies of retinoids, including computer-assisted molecular design, have yielded class/subtype-selective agonists, synergists, and antagonists of RARs and their partner nuclear receptors, retinoid X receptors. Among them, the benzanilide-type compounds, Am80 and TAC101, are under phase II and I/II clinical studies in Japan and the USA, respectively. Thalidomide is a hypnotic/sedative drug that was withdrawn from the market because of teratogenicity. However, thalidomide has been established to be useful in the treatment of various diseases including cancer. Thalidomide elicits a wide range of pharmacological effects, including anticachexia, anti-tumor-promoting, antiangiogenic, immunosuppressing, antiviral, hypoglycemic, and antimetastatic activities. We have found that thalidomide is a multitarget drug. Hypothetical target events/molecules of thalidomide include tumor necrosis factor-α production, nuclear androgen receptor, cyclooxygenases, aminopeptidases, and α-glucosidase. Specific and potent compounds for each of these target phenomena/molecules have been prepared by appropriate modification of the thalidomide structure, and are expected to be superior lead compounds for novel immunomodulators, antiangiogenic agents, and anti-tumor-promoting agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Eyrolles L, Kawachi E, Matsushima Y, Nakajima O, Kagechika H, Hashimoto Y, Shudo K (1992) Retinoid antagonists: molecular design based on the ligand superfamily concept. Med Chem Res 2:361

    CAS  Google Scholar 

  2. Eyrolles L, Kagechika H, Kawachi E, Fukasawa H, Iijima T, Matsushima Y, Hashimoto Y, Shudo K (1994) Retinobenzoic acids. 6. Retinoid antagonists with a heterocyclic ring. J Med Chem 37:1508

    CAS  PubMed  Google Scholar 

  3. Hashimoto Y (1991) Retinobenzoic acids and nuclear retinoic acid receptors. Cell Struct Funct 16:113

    CAS  PubMed  Google Scholar 

  4. Hashimoto Y (1998) Novel biological response modifiers derived from thalidomide. Curr Med Chem 5:163

    CAS  PubMed  Google Scholar 

  5. Hashimoto Y (2000) Bioprobes recognizing nucleic acids and signal transduction factors. Recent Res Dev Org Chem 4:87

    CAS  Google Scholar 

  6. Hashimoto Y (2002) Structural development of biological response modifiers based on thalidomide. Bioorg Med Chem 10:461

    Article  CAS  PubMed  Google Scholar 

  7. Hashimoto Y, Shudo K (1991) Retinoids and their nuclear receptors. Cell Biol Rev 25:209

    Google Scholar 

  8. Hashimoto Y, Kagechika H, Shudo K (1990) Expression of retinoic acid receptor genes and the ligand-binding selectivity of retinoic acid receptors (RARs). Biochem Biophys Res Commun 166:1300

    CAS  PubMed  Google Scholar 

  9. Ishioka T, Kubo A, Koiso Y, Nagasawa K, Itai A, Hashimoto Y (2002) Novel non-steroidal/non-anilide type androgen antagonists with an isoxazolone moiety. Bioorg Med Chem 10:1555

    Article  CAS  PubMed  Google Scholar 

  10. Kagechika H, Kawachi E, Hashimoto Y, Himi T, Shudo K (1988) Retinobenzoic acids. 1. Structure–activity relationships of aromatic amides with retinoidal activity. J Med Chem 31:2182

    CAS  PubMed  Google Scholar 

  11. Kakuta H, Takahashi H, Sou S, Kita T, Nagasawa K, Hashimoto Y (2001) Enzyme inhibitors derived from thalidomide. Recent Res Dev Med Chem 1:189

    CAS  Google Scholar 

  12. Komoda M, Kakuta H, Takahashi H, Fujimoto Y, Kadoya S, Kato F, Hashimoto Y (2001) Specific inhibitor of puromycin-sensitive aminopeptidase with a homophthalimide skeleton: identification of the target molecule and a structure–activity relationship study. Bioorg Med Chem 9:121

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Hashimoto Y, Agadir A, Kagechika H, Zhang X (1999) Identification of a novel class of retinoic acid receptor β-selective retinoid antagonists and their inhibitory effects on AP-1 activity and retinoic acid-induced apoptosis in human breast cancer cells. J Biol Chem 274:15360

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Lee MO, Wang HG, Li Y, Hashimoto Y, Klaus M, Reed JC, Zhang X (1996) Retinoic acid receptor β mediates the growth-inhibitory effect of retinoic acid by promoting apoptosis in human breast cancer cells. Mol Cell Biol 16:1138

    Google Scholar 

  15. Miyachi H, Azuma A, Hioki E, Iwasaki S, Hashimoto Y (1996) Enantio-dependence of inducer-specific bidirectional regulation of tumor necrosis factor (TNF)-alpha production: potent TNF-α production inhibitors. Bioorg Med Chem Lett 6:2293

    Article  CAS  Google Scholar 

  16. Miyachi H, Azuma A, Hioki E, Iwasaki S, Kobayashi Y, Hashimoto Y (1996) Inducer-specific bidirectional regulation by thalidomide and phenylphthalimides of tumor necrosis factor-alpha production. Biochem Biophys Res Commun 224:426

    Article  CAS  PubMed  Google Scholar 

  17. Miyachi H, Azuma A, Hioki E, Iwasaki S, Kobayashi Y, Hashimoto Y (1996) Cell type-/inducer-specific bidirectional regulation by thalidomide and phenylphthalimides of tumor necrosis factor-alpha production and its enantio-dependence. Biochem Biophys Res Commun 226:439

    Article  CAS  PubMed  Google Scholar 

  18. Miyachi H, Azuma A, Kitamoto T, Hayashi K, Kato K, Koga M, Sato B, Hashimoto Y (1997) Potent nonsteroidal androgen antagonists with a phthalimide skeleton. Bioorg Med Chem Lett 7:1483

    Article  CAS  Google Scholar 

  19. Miyachi H, Azuma A, Ogasawara A, Uchimura E, Watanabe N, Kobayashi Y, Kato F, Kato M, Hashimoto Y (1997) Novel biological response modifiers: phthalimides with tumor necrosis factor-alpha production-regulating activity. J Med Chem 40:2858

    Article  CAS  PubMed  Google Scholar 

  20. Miyachi H, Ogasawara A, Azuma A, Hashimoto Y (1997) Tumor necrosis factor-alpha production-inhibiting activity of phthalimide analogues on human leukemia THP-1 cells and a structure–activity relationship study. Bioorg Med Chem 5:2095

    Article  CAS  PubMed  Google Scholar 

  21. Miyachi H, Kato M, Kato F, Hashimoto Y (1998) Novel potent nonpeptide aminopeptidase N inhibitors with a cyclic imide skeleton. J Med Chem 41:263

    Article  CAS  PubMed  Google Scholar 

  22. Noguchi T, Shimazawa R, Nagasawa K, Hashimoto Y (2002) Thalidomide and its analogues as cyclooxygenase inhibitors. Bioorg Med Chem Lett 12:1043

    Article  CAS  PubMed  Google Scholar 

  23. Shimazawa R, Takayama H, Fujimoto Y, Komoda M, Dodo K, Yamasaki R, Shirai R, Koiso Y, Miyata K, Kato F, Kato M, Miyachi H, Hashimoto Y (1999) Novel small molecule nonpeptide aminopeptidase N inhibitors with a cyclic imide skeleton. J Enzyme Inhib 14:259

    CAS  PubMed  Google Scholar 

  24. Shimazawa R, Takayama H, Kato F, Kato M, Hashimoto Y (1999) Non-peptide small-molecular inhibitors of dipeptidyl peptidase IV: N-phenylphthalimide analogs. Bioorg Med Chem Lett 9:559

    Article  CAS  PubMed  Google Scholar 

  25. Sou S, Mayumi S, Takahashi H, Yamasaki R, Kadoya S, Sodeoka M, Hashimoto Y (2000) Novel α-glucosidase inhibitors with a tetrachlorophthalimide skeleton. Bioorg Med Chem Lett 10:1081

    Article  CAS  PubMed  Google Scholar 

  26. Umemiya H, Fukasawa H, Ebisawa M, Eyrolles L, Kawachi E, Eisenmann G, Gronemeyer H, Hashimoto Y, Shudo K, Kagechika H (1997) Regulation of retinoidal actions by diazepinylbenzoic acids. Retinoid synergists which activate the RXR–RAR heterodimers. J Med Chem 40:4222

    Article  CAS  PubMed  Google Scholar 

  27. Yamakawa T, Kagechika H, Kawachi E, Hashimoto Y, Shudo K (1990) Retinobenzoic acids. 5. Retinoidal activities of compounds having a trimethylsilyl or trimethylgermyl group(s) in human promyelocytic leukemia cells HL-60. J Med Chem 33:1430

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The studies described in this paper were partially supported by grants-in-aid for scientific research from the Ministry of Education, Science, Sports and Culture, Japan. The author is grateful to all the coauthors of our published papers listed in the References.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Hashimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, Y. Structural development of synthetic retinoids and thalidomide-related molecules. Cancer Chemother Pharmacol 52 (Suppl 1), 16–23 (2003). https://doi.org/10.1007/s00280-003-0590-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-003-0590-3

Keywords

Navigation