Skip to main content

Advertisement

Log in

Recent progress in chimeric antigen receptor therapy for acute myeloid leukemia

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Although CAR-T cell therapy has been particularly successful as a treatment for B cell malignancies, effectively treating acute myeloid leukemia with CAR remains a greater challenge. Multiple preclinical studies and clinical trials are underway, including on AML-related surface markers that CAR-T cells can target, such as CD123, CD33, NKG2D, CLL1, CD7, FLT3, Lewis Y and CD70, all of which provide opportunities for developing CAR-T therapies with improved specificity and efficacy. We also explored specific strategies for CAR-T cell treatment of AML, including immune checkpoints, suicide genes, dual targeting, genomic tools and the potential for universal CAR. In addition, CAR-T cell therapy for AML still has certain risks and challenges, including cytokine release syndrome (CRS) and haematotoxicity. Despite these challenges, as a new targeting method for AML treatment, CAR-T cell therapy still has great prospects. Ongoing research aims to further optimize this treatment mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availablity

Data openly available in a public repository.

References

  1. Vishwasrao P, Li G, Boucher JC, Smith DL, Hui SK (2022) Emerging CAR T cell strategies for the treatment of AML. Cancers 14(5). https://doi.org/10.3390/cancers14051241

  2. Schultz LM, Eaton A, Baggott C, Rossoff J, Prabhu S, Keating AK, Krupski C, Pacenta H, Philips CL, Talano JA, Moskop A, Baumeister SHC, Myers GD, Karras NA, Brown PA, Qayed M, Hermiston M, Satwani P, Wilcox R et al (2023) Outcomes after nonresponse and relapse post-tisagenlecleucel in children, adolescents, and young adults with B-cell acute lymphoblastic leukemia. J Clin Oncol 41(2):354–363. https://doi.org/10.1200/jco.22.01076

    Article  CAS  PubMed  Google Scholar 

  3. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, Timmerman JM, Stiff PJ, Friedberg JW, Flinn IW, Goy A, Hill BT, Smith MR, Deol A, Farooq U et al (2017) Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 377(26):2531–2544. https://doi.org/10.1056/NEJMoa1707447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frey NV (2022) Approval of brexucabtagene autoleucel for adults with relapsed and refractory acute lymphocytic leukemia. Blood 140(1):11–15. https://doi.org/10.1182/blood.2021014892

    Article  CAS  PubMed  Google Scholar 

  5. Kamdar M, Solomon SR, Arnason J, Johnston PB, Glass B, Bachanova V, Ibrahimi S, Mielke S, Mutsaers P, Hernandez-Ilizaliturri F, Izutsu K, Morschhauser F, Lunning M, Maloney DG, Crotta A, Montheard S, Previtali A, Stepan L, Ogasawara K et al (2022) Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): results from an interim analysis of an open-label, randomised, phase 3 trial. Lancet (London, England) 399(10343):2294–2308. https://doi.org/10.1016/s0140-6736(22)00662-6

    Article  CAS  PubMed  Google Scholar 

  6. Hansen DK, Sidana S, Peres LC, Colin Leitzinger C, Shune L, Shrewsbury A, Gonzalez R, Sborov DW, Wagner C, Dima D, Hashmi H, Kocoglu MH, Atrash S, Simmons G, Kalariya N, Ferreri C, Afrough A, Kansagra A, Voorhees P et al (2023) Idecabtagene vicleucel for relapsed/refractory multiple myeloma: real-world experience from the Myeloma CAR T Consortium. J Clin Oncol 41(11):2087–2097. https://doi.org/10.1200/jco.22.01365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martin T, Usmani SZ, Berdeja JG, Agha M, Cohen AD, Hari P, Avigan D, Deol A, Htut M, Lesokhin A, Munshi NC, O'Donnell E, Stewart AK, Schecter JM, Goldberg JD, Jackson CC, Yeh TM, Banerjee A, Allred A et al (2023) Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J Clin Oncol 41(6):1265–1274. https://doi.org/10.1200/jco.22.00842

    Article  CAS  PubMed  Google Scholar 

  8. Perna F, Berman SH, Soni RK, Mansilla-Soto J, Eyquem J, Hamieh M, Hendrickson RC, Brennan CW, Sadelain M (2017) Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML. Cancer Cell 32(4):506–519.e505. https://doi.org/10.1016/j.ccell.2017.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang QS, Wang Y, Lv HY, Han QW, Fan H, Guo B, Wang LL, Han WD (2015) Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther : J Am Soc Gene Ther 23(1):184–191. https://doi.org/10.1038/mt.2014.164

    Article  CAS  Google Scholar 

  10. Tambaro FP, Singh H, Jones E, Rytting M, Mahadeo KM, Thompson P, Daver N, DiNardo C, Kadia T, Garcia-Manero G, Chan T, Shah RR, Wierda WG (2021) Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia. Leukemia 35(11):3282–3286. https://doi.org/10.1038/s41375-021-01232-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, Meyerrose T, Rossi R, Grimes B, Rizzieri DA, Luger SM, Phillips GL (2000) The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14(10):1777–1784. https://doi.org/10.1038/sj.leu.2401903

    Article  CAS  PubMed  Google Scholar 

  12. Jin L, Lee EM, Ramshaw HS, Busfield SJ, Peoppl AG, Wilkinson L, Guthridge MA, Thomas D, Barry EF, Boyd A, Gearing DP, Vairo G, Lopez AF, Dick JE, Lock RB (2009) Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 5(1):31–42. https://doi.org/10.1016/j.stem.2009.04.018

    Article  CAS  PubMed  Google Scholar 

  13. Rongvaux A, Takizawa H, Strowig T, Willinger T, Eynon EE, Flavell RA, Manz MG (2013) Human hemato-lymphoid system mice: current use and future potential for medicine. Annu Rev Immunol 31:635–674. https://doi.org/10.1146/annurev-immunol-032712-095921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uy GL, Aldoss I, Foster MC, Sayre PH, Wieduwilt MJ, Advani AS, Godwin JE, Arellano ML, Sweet KL, Emadi A, Ravandi F, Erba HP, Byrne M, Michaelis L, Topp MS, Vey N, Ciceri F, Carrabba MG, Paolini S et al (2021) Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 137(6):751–762. https://doi.org/10.1182/blood.2020007732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mardiros A, Dos Santos C, McDonald T, Brown CE, Wang X, Budde LE, Hoffman L, Aguilar B, Chang WC, Bretzlaff W, Chang B, Jonnalagadda M, Starr R, Ostberg JR, Jensen MC, Bhatia R, Forman SJ (2013) T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood 122(18):3138–3148. https://doi.org/10.1182/blood-2012-12-474056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gill S, Tasian SK, Ruella M, Shestova O, Li Y, Porter DL, Carroll M, Danet-Desnoyers G, Scholler J, Grupp SA, June CH, Kalos M (2014) Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood 123(15):2343–2354. https://doi.org/10.1182/blood-2013-09-529537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laszlo GS, Estey EH, Walter RB (2014) The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Rev 28(4):143–153. https://doi.org/10.1016/j.blre.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  18. Walter RB, Gooley TA, van der Velden VH, Loken MR, van Dongen JJ, Flowers DA, Bernstein ID, Appelbaum FR (2007) CD33 expression and P-glycoprotein-mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood 109(10):4168–4170. https://doi.org/10.1182/blood-2006-09-047399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Castaigne S, Pautas C, Terré C, Raffoux E, Bordessoule D, Bastie JN, Legrand O, Thomas X, Turlure P, Reman O, de Revel T, Gastaud L, de Gunzburg N, Contentin N, Henry E, Marolleau JP, Aljijakli A, Rousselot P, Fenaux P et al (2012) Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet (London, England) 379(9825):1508–1516. https://doi.org/10.1016/s0140-6736(12)60485-1

    Article  CAS  PubMed  Google Scholar 

  20. Dutour A, Marin V, Pizzitola I, Valsesia-Wittmann S, Lee D, Yvon E, Finney H, Lawson A, Brenner M, Biondi A, Biagi E, Rousseau R (2012) In vitro and in vivo antitumor effect of anti-CD33 chimeric receptor-expressing EBV-CTL against CD33 acute myeloid leukemia. Adv Hematol 2012:683065. https://doi.org/10.1155/2012/683065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marin V, Pizzitola I, Agostoni V, Attianese GM, Finney H, Lawson A, Pule M, Rousseau R, Biondi A, Biagi E (2010) Cytokine-induced killer cells for cell therapy of acute myeloid leukemia: improvement of their immune activity by expression of CD33-specific chimeric receptors. Haematologica 95(12):2144–2152. https://doi.org/10.3324/haematol.2010.026310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barber A, Zhang T, DeMars LR, Conejo-Garcia J, Roby KF, Sentman CL (2007) Chimeric NKG2D receptor-bearing T cells as immunotherapy for ovarian cancer. Cancer Res 67(10):5003–5008. https://doi.org/10.1158/0008-5472.Can-06-4047

    Article  CAS  PubMed  Google Scholar 

  23. Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102(4):1389–1396. https://doi.org/10.1182/blood-2003-01-0019

    Article  CAS  PubMed  Google Scholar 

  24. Spear P, Barber A, Rynda-Apple A, Sentman CL (2013) NKG2D CAR T-cell therapy inhibits the growth of NKG2D ligand heterogeneous tumors. Immunol Cell Biol 91(6):435–440. https://doi.org/10.1038/icb.2013.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spear P, Wu MR, Sentman ML, Sentman CL (2013) NKG2D ligands as therapeutic targets. Cancer Immun 13:8

    PubMed  PubMed Central  Google Scholar 

  26. Driouk L, Gicobi JK, Kamihara Y, Rutherford K, Dranoff G, Ritz J, Baumeister SHC (2020) Chimeric antigen receptor T cells targeting NKG2D-ligands show robust efficacy against acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Front Immunol 11:580328. https://doi.org/10.3389/fimmu.2020.580328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baumeister SH, Murad J, Werner L, Daley H, Trebeden-Negre H, Gicobi JK, Schmucker A, Reder J, Sentman CL, Gilham DE, Lehmann FF, Galinsky I, DiPietro H, Cummings K, Munshi NC, Stone RM, Neuberg DS, Soiffer R, Dranoff G et al (2019) Phase I trial of autologous CAR T cells targeting NKG2D ligands in patients with AML/MDS and multiple myeloma. Cancer Immunol Res 7(1):100–112. https://doi.org/10.1158/2326-6066.Cir-18-0307

    Article  CAS  PubMed  Google Scholar 

  28. Tashiro H, Sauer T, Shum T, Parikh K, Mamonkin M, Omer B, Rouce RH, Lulla P, Rooney CM, Gottschalk S, Brenner MK (2017) Treatment of acute myeloid leukemia with T cells expressing chimeric antigen receptors directed to C-type lectin-like molecule 1. Mol Ther :J Am Soc Gene Ther 25(9):2202–2213. https://doi.org/10.1016/j.ymthe.2017.05.024

    Article  CAS  Google Scholar 

  29. Wang J, Chen S, Xiao W, Li W, Wang L, Yang S, Wang W, Xu L, Liao S, Liu W, Wang Y, Liu N, Zhang J, Xia X, Kang T, Chen G, Cai X, Yang H, Zhang X et al (2018) CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia. J Hematol Oncol 11(1):7. https://doi.org/10.1186/s13045-017-0553-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu F, Cao Y, Pinz K, Ma Y, Wada M, Chen K, Ma G, Shen J, Tse CO, Su Y, Xiong Y, He G, Li Y, Ma Y (2018) First-in-Human CLL1-CD33 Compound CAR T cell therapy induces complete remission in patients with refractory acute myeloid leukemia: update on phase 1 clinical trial. Blood 132(Supplement 1):901–901. https://doi.org/10.1182/blood-2018-99-110579/JBlood

    Article  Google Scholar 

  31. Lin G, Zhang Y, Yu L, Wu D (2021) Cytotoxic effect of CLL-1 CAR-T cell immunotherapy with PD-1 silencing on relapsed/refractory acute myeloid leukemia. Mol Med Rep 23:(3). https://doi.org/10.3892/mmr.2021.11847

    Article  CAS  Google Scholar 

  32. Zhang H, Wang P, Li Z, He Y, Gan W, Jiang H (2021) Anti-CLL1 chimeric antigen receptor T-cell therapy in children with relapsed/refractory acute myeloid leukemia. Clin Cancer Res an official J Am Assoc Cancer Res 27(13):3549–3555. https://doi.org/10.1158/1078-0432.Ccr-20-4543

    Article  CAS  Google Scholar 

  33. Tiftik N, Bolaman Z, Batun S, Ayyildiz O, Isikdogan A, Kadikoylu G, Muftuoglu E (2004) The importance of CD7 and CD56 antigens in acute leukaemias. Int J Clin Pract 58(2):149–152. https://doi.org/10.1111/j.1368-5031.2004.0018.x

    Article  CAS  PubMed  Google Scholar 

  34. Gomes-Silva D, Atilla E, Atilla PA, Mo F, Tashiro H, Srinivasan M, Lulla P, Rouce RH, Cabral JMS, Ramos CA, Brenner MK, Mamonkin M (2019) CD7 CAR T cells for the therapy of acute myeloid leukemia. Mol Ther : the J Am Soc Gene Ther 27(1):272–280. https://doi.org/10.1016/j.ymthe.2018.10.001

    Article  CAS  Google Scholar 

  35. Levis M, Small D (2003) FLT3: ITDoes matter in leukemia. Leukemia 17(9):1738–1752. https://doi.org/10.1038/sj.leu.2403099

    Article  CAS  PubMed  Google Scholar 

  36. Perl AE, Martinelli G, Cortes JE, Neubauer A, Berman E, Paolini S, Montesinos P, Baer MR, Larson RA, Ustun C, Fabbiano F, Erba HP, Di Stasi A, Stuart R, Olin R, Kasner M, Ciceri F, Chou WC, Podoltsev N et al (2019) Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N Engl J Med 381(18):1728–1740. https://doi.org/10.1056/NEJMoa1902688

    Article  CAS  PubMed  Google Scholar 

  37. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, Thiede C, Prior TW, Döhner K, Marcucci G, Lo-Coco F, Klisovic RB, Wei A, Sierra J, Sanz MA, Brandwein JM, de Witte T, Niederwieser D, Appelbaum FR et al (2017) Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med 377(5):454–464. https://doi.org/10.1056/NEJMoa1614359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cortes JE, Khaled S, Martinelli G, Perl AE, Ganguly S, Russell N, Krämer A, Dombret H, Hogge D, Jonas BA, Leung AY, Mehta P, Montesinos P, Radsak M, Sica S, Arunachalam M, Holmes M, Kobayashi K, Namuyinga R et al (2019) Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol 20(7):984–997. https://doi.org/10.1016/s1470-2045(19)30150-0

    Article  CAS  PubMed  Google Scholar 

  39. Chen L, Mao H, Zhang J, Chu J, Devine S, Caligiuri MA, Yu J (2017) Targeting FLT3 by chimeric antigen receptor T cells for the treatment of acute myeloid leukemia. Leukemia 31(8):1830–1834. https://doi.org/10.1038/leu.2017.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Xu Y, Li S, Liu J, Xing Y, Xing H, Tian Z, Tang K, Rao Q, Wang M, Wang J (2018) Targeting FLT3 in acute myeloid leukemia using ligand-based chimeric antigen receptor-engineered T cells. J Hematol Oncol 11(1):60. https://doi.org/10.1186/s13045-018-0603-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riether C, Pabst T, Höpner S, Bacher U, Hinterbrandner M, Banz Y, Müller R, Manz MG, Gharib WH, Francisco D, Bruggmann R, van Rompaey L, Moshir M, Delahaye T, Gandini D, Erzeel E, Hultberg A, Fung S, de Haard H et al (2020) Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypomethylating agents. Nat Med 26(9):1459–1467. https://doi.org/10.1038/s41591-020-0910-8

    Article  CAS  PubMed  Google Scholar 

  42. Riether C, Schürch CM, Bührer ED, Hinterbrandner M, Huguenin AL, Hoepner S, Zlobec I, Pabst T, Radpour R, Ochsenbein AF (2017) CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia. J Exp Med 214(2):359–380. https://doi.org/10.1084/jem.20152008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sauer T, Parikh K, Sharma S, Omer B, Sedloev D, Chen Q, Angenendt L, Schliemann C, Schmitt M, Müller-Tidow C, Gottschalk S, Rooney CM (2021) CD70-specific CAR T cells have potent activity against acute myeloid leukemia without HSC toxicity. Blood 138(4):318–330. https://doi.org/10.1182/blood.2020008221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Westwood JA, Murray WK, Trivett M, Haynes NM, Solomon B, Mileshkin L, Ball D, Michael M, Burman A, Mayura-Guru P, Trapani JA, Peinert S, Hönemann D, Miles Prince H, Scott AM, Smyth MJ, Darcy PK, Kershaw MH (2009) The Lewis-Y carbohydrate antigen is expressed by many human tumors and can serve as a target for genetically redirected T cells despite the presence of soluble antigen in serum. J Immunother (Hagerstown, Md : 1997) 32(3):292–301. https://doi.org/10.1097/CJI.0b013e31819b7c8e

    Article  CAS  Google Scholar 

  45. Peinert S, Prince HM, Guru PM, Kershaw MH, Smyth MJ, Trapani JA, Gambell P, Harrison S, Scott AM, Smyth FE, Darcy PK, Tainton K, Neeson P, Ritchie DS, Hönemann D (2010) Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen. Gene Ther 17(5):678–686. https://doi.org/10.1038/gt.2010.21

    Article  CAS  PubMed  Google Scholar 

  46. Neeson P, Shin A, Tainton KM, Guru P, Prince HM, Harrison SJ, Peinert S, Smyth MJ, Trapani JA, Kershaw MH, Darcy PK, Ritchie DS (2010) Ex vivo culture of chimeric antigen receptor T cells generates functional CD8+ T cells with effector and central memory-like phenotype. Gene Ther 17(9):1105–1116. https://doi.org/10.1038/gt.2010.59

    Article  CAS  PubMed  Google Scholar 

  47. Li S, Siriwon N, Zhang X, Yang S, Jin T, He F, Kim YJ, Mac J, Lu Z, Wang S, Han X, Wang P (2017) Enhanced cancer immunotherapy by chimeric antigen receptor-modified T cells engineered to secrete checkpoint inhibitors. Clin Cancer Res an official J Am Assoc Cancer Res 23(22):6982–6992. https://doi.org/10.1158/1078-0432.Ccr-17-0867

    Article  CAS  Google Scholar 

  48. Rafiq S, Yeku OO, Jackson HJ, Purdon TJ, van Leeuwen DG, Drakes DJ, Song M, Miele MM, Li Z, Wang P, Yan S, Xiang J, Ma X, Seshan VE, Hendrickson RC, Liu C, Brentjens RJ (2018) Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol 36(9):847–856. https://doi.org/10.1038/nbt.4195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chong EA, Melenhorst JJ, Lacey SF, Ambrose DE, Gonzalez V, Levine BL, June CH, Schuster SJ (2017) PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood 129(8):1039–1041. https://doi.org/10.1182/blood-2016-09-738245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cassaday RD, Garcia KA, Fromm JR, Percival MM, Turtle CJ, Nghiem PT, Stevenson PA, Estey EH (2020) Phase 2 study of pembrolizumab for measurable residual disease in adults with acute lymphoblastic leukemia. Blood Adv 4(14):3239–3245. https://doi.org/10.1182/bloodadvances.2020002403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, Mangan PA, Kulikovskaya I, Gupta M, Chen F, Tian L, Gonzalez VE, Xu J, Jung IY, Melenhorst JJ, Plesa G, Shea J, Matlawski T, Cervini A et al (2020) CRISPR-engineered T cells in patients with refractory cancer. Science (New York, NY) 367 (6481). https://doi.org/10.1126/science.aba7365

  52. Minagawa K, Jamil MO, Al-Obaidi M, Pereboeva L, Salzman D, Erba HP, Lamb LS, Bhatia R, Mineishi S, Di Stasi A (2017) Correction: in vitro pre-clinical validation of suicide gene modified anti-CD33 redirected chimeric antigen receptor T-cells for acute myeloid leukemia. PLoS One 12(2):e0172640. https://doi.org/10.1371/journal.pone.0172640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang XY, Bian MR, Lin GQ, Yu L, Zhang YM, Wu DP (2023) Tandem bispecific CD123/CLL-1 CAR-T cells exhibit specific cytolytic effector functions against human acute myeloid leukaemia. Eur J Haematol. https://doi.org/10.1111/ejh.14104

  54. Majzner RG, Mackall CL (2018) Tumor antigen escape from CAR T-cell therapy. Cancer Discov 8(10):1219–1226. https://doi.org/10.1158/2159-8290.Cd-18-0442

    Article  CAS  PubMed  Google Scholar 

  55. Schneider D, Xiong Y, Wu D, Nӧlle V, Schmitz S, Haso W, Kaiser A, Dropulic B, Orentas RJ (2017) A tandem CD19/CD20 CAR lentiviral vector drives on-target and off-target antigen modulation in leukemia cell lines. J Immunother Cancer 5:42. https://doi.org/10.1186/s40425-017-0246-1

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zah E, Lin MY, Silva-Benedict A, Jensen MC, Chen YY (2016) T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res 4(6):498–508. https://doi.org/10.1158/2326-6066.Cir-15-0231

    Article  CAS  PubMed Central  Google Scholar 

  57. Petrov JC, Wada M, Pinz KG, Yan LE, Chen KH, Shuai X, Liu H, Chen X, Leung LH, Salman H, Hagag N, Liu F, Jiang X, Ma Y (2018) Compound CAR T-cells as a double-pronged approach for treating acute myeloid leukemia. Leukemia 32(6):1317–1326. https://doi.org/10.1038/s41375-018-0075-3

    Article  PubMed Central  Google Scholar 

  58. Bielamowicz K, Fousek K, Byrd TT, Samaha H, Mukherjee M, Aware N, Wu MF, Orange JS, Sumazin P, Man TK, Joseph SK, Hegde M, Ahmed N (2018) Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro-oncology 20(4):506–518. https://doi.org/10.1093/neuonc/nox182

    Article  CAS  PubMed  Google Scholar 

  59. Huang L, Wang N, Li C, Cao Y, Xiao Y, Xiao M, Zhang Y, Zhang T, Zhou J (2017) Sequential infusion of anti-CD22 and anti-CD19 chimeric antigen receptor T cells for adult patients with refractory/relapsed B-cell acute lymphoblastic leukemia. Blood 130(Supplement 1):846–846. https://doi.org/10.1182/blood.V130.Suppl_1.846.846/JBlood

    Article  Google Scholar 

  60. Bachmann M (2019) The UniCAR system: A modular CAR T cell approach to improve the safety of CAR T cells. Immunol Lett 211:13–22. https://doi.org/10.1016/j.imlet.2019.05.003

    Article  CAS  PubMed  Google Scholar 

  61. Meyer JE, Loff S, Dietrich J, Spehr J, Jurado Jiménez G, von Bonin M, Ehninger G, Cartellieri M, Ehninger A (2021) Evaluation of switch-mediated costimulation in trans on universal CAR-T cells (UniCAR) targeting CD123-positive AML. Oncoimmunology 10(1):1945804. https://doi.org/10.1080/2162402x.2021.1945804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wermke M, Kraus S, Ehninger A, Bargou RC, Goebeler ME, Middeke JM, Kreissig C, von Bonin M, Koedam J, Pehl M, Bornhäuser M, Einsele H, Ehninger G, Cartellieri M (2021) Proof of concept for a rapidly switchable universal CAR-T platform with UniCAR-T-CD123 in relapsed/refractory AML. Blood 137(22):3145–3148. https://doi.org/10.1182/blood.2020009759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Peroni E, Randi ML, Rosato A, Cagnin S (2023) Acute myeloid leukemia: from NGS, through scRNA-seq, to CAR-T. dissect cancer heterogeneity and tailor the treatment. J Exp Clin Cancer Res CR 42(1):259. https://doi.org/10.1186/s13046-023-02841-8

    Article  CAS  PubMed  Google Scholar 

  64. Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, Marson A (2017) CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep 7(1):737. https://doi.org/10.1038/s41598-017-00462-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dimitri A, Herbst F, Fraietta JA (2022) Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol Cancer 21(1):78. https://doi.org/10.1186/s12943-022-01559-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jiang W, He Y, He W, Wu G, Zhou X, Sheng Q, Zhong W, Lu Y, Ding Y, Lu Q, Ye F, Hua H (2020) Exhausted CD8+T cells in the tumor immune microenvironment: new pathways to therapy. Front Immunol 11:622509. https://doi.org/10.3389/fimmu.2020.622509

    Article  CAS  PubMed  Google Scholar 

  67. Sterner RM, Cox MJ, Sakemura R, Kenderian SS (2019) Using CRISPR/Cas9 to Knock Out GM-CSF in CAR-T Cells. J Visual Exp : JoVE 149. https://doi.org/10.3791/59629

  68. Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, Odak A, Gönen M, Sadelain M (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543(7643):113–117. https://doi.org/10.1038/nature21405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oluwole OO, Davila ML (2016) At the bedside: clinical review of chimeric antigen receptor (CAR) T cell therapy for B cell malignancies. J Leukoc Biol 100(6):1265–1272. https://doi.org/10.1189/jlb.5BT1115-524R

    Article  CAS  PubMed  Google Scholar 

  70. Park JH, Geyer MB, Brentjens RJ (2016) CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood 127(26):3312–3320. https://doi.org/10.1182/blood-2016-02-629063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fiorenza S, Turtle CJ (2021) CAR-T cell therapy for acute myeloid leukemia: preclinical rationale, current clinical progress, and barriers to success. BioDrugs : Clin Immunother , Biopharm Gene Ther 35(3):281–302. https://doi.org/10.1007/s40259-021-00477-8

    Article  Google Scholar 

  72. Jain T, Knezevic A, Pennisi M, Chen Y, Ruiz JD, Purdon TJ, Devlin SM, Smith M, Shah GL, Halton E, Diamonte C, Scordo M, Sauter CS, Mead E, Santomasso BD, Palomba ML, Batlevi CW, Maloy MA, Giralt S et al (2020) Hematopoietic recovery in patients receiving chimeric antigen receptor T-cell therapy for hematologic malignancies. Blood Adv 4(15):3776–3787. https://doi.org/10.1182/bloodadvances.2020002509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rejeski K, Perez A, Iacoboni G, Penack O, Bücklein V, Jentzsch L, Mougiakakos D, Johnson G, Arciola B, Carpio C, Blumenberg V, Hoster E, Bullinger L, Locke FL, von Bergwelt-Baildon M, Mackensen A, Bethge W, Barba P, Jain MD, Subklewe M (2022) The CAR-HEMATOTOX risk-stratifies patients for severe infections and disease progression after CD19 CAR-T in R/R LBCL. J Immunother Cancer 10(5). https://doi.org/10.1136/jitc-2021-004475

  74. Bordignon C, Bonini C, Verzeletti S, Nobili N, Maggioni D, Traversari C, Giavazzi R, Servida P, Zappone E, Benazzi E et al (1995) Transfer of the HSV-tk gene into donor peripheral blood lymphocytes for in vivo modulation of donor anti-tumor immunity after allogeneic bone marrow transplantation. Hum Gene Ther 6(6):813–819. https://doi.org/10.1089/hum.1995.6.6-813

    Article  CAS  PubMed  Google Scholar 

  75. Tey SK, Dotti G, Rooney CM, Heslop HE, Brenner MK (2007) Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation. Biol Blood Marrow Transpl :J Am Soc Blood Marrow Transpl 13(8):913–924. https://doi.org/10.1016/j.bbmt.2007.04.005

    Article  CAS  Google Scholar 

  76. Cummins KD, Gill S (2019) Will CAR T cell therapy have a role in AML? Promises and pitfalls. Semin Hematol 56(2):155–163. https://doi.org/10.1053/j.seminhematol.2018.08.008

    Article  PubMed  Google Scholar 

  77. Casirati G, Cosentino A, Mucci A, Salah Mahmoud M, Ugarte Zabala I, Zeng J, Ficarro SB, Klatt D, Brendel C, Rambaldi A, Ritz J, Marto JA, Pellin D, Bauer DE, Armstrong SA, Genovese P (2023) Epitope editing enables targeted immunotherapy of acute myeloid leukaemia. Nature 621(7978):404–414. https://doi.org/10.1038/s41586-023-06496-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Morris EC, Neelapu SS, Giavridis T, Sadelain M (2022) Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol 22(2):85–96. https://doi.org/10.1038/s41577-021-00547-6

    Article  CAS  PubMed  Google Scholar 

  79. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM, Yang JC, Kammula US, Devillier L, Carpenter R, Nathan DA, Morgan RA, Laurencot C, Rosenberg SA (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119(12):2709–2720. https://doi.org/10.1182/blood-2011-10-384388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cobb DA, Lee DW (2021) Cytokine release syndrome biology and management. Cancer J (Sudbury, Mass) 27(2):119–125. https://doi.org/10.1097/ppo.0000000000000515

    Article  CAS  Google Scholar 

  81. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518. https://doi.org/10.1056/NEJMoa1215134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Topp MS, van Meerten T, Houot R, Minnema MC, Bouabdallah K, Lugtenburg PJ, Thieblemont C, Wermke M, Song KW, Avivi I, Kuruvilla J, Dührsen U, Zheng Y, Vardhanabhuti S, Dong J, Bot A, Rossi JM, Plaks V, Sherman M et al (2021) Earlier corticosteroid use for adverse event management in patients receiving axicabtagene ciloleucel for large B-cell lymphoma. Br J Haematol 195(3):388–398. https://doi.org/10.1111/bjh.17673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the grants from the National Natural Science Foundation of China (Grant No. 81970138, 82270165), National Key R&D Program of China (2022YFC2502703), Jiangsu Province Natural Science Foundation of China (Grant No. BK20221235), Translational Research Grant of NCRCH (Grant No. 2020ZKMB05), Jiangsu Province “333” Project, Social Development Project of the Science and Technology Department of Jiangsu (Grant No. BE2021649).

Author information

Authors and Affiliations

Authors

Contributions

The review article was collaboratively conceptualized and designed by all three authors, W. X., Z. Y., and X. S. The overall framework of the paper was envisioned and designed by W. X., Z. Y., and X. S. W. X. conducted the literature search and collection. Z. Y., and X. S. provided expert theoretical support. The manuscript was written by W. X.

Corresponding authors

Correspondence to Yanming Zhang or Shengli Xue.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author Xiangyu Wang contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, Y. & Xue, S. Recent progress in chimeric antigen receptor therapy for acute myeloid leukemia. Ann Hematol 103, 1843–1857 (2024). https://doi.org/10.1007/s00277-023-05601-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05601-y

Keywords

Navigation