Skip to main content
Log in

Young patients with myelofibrosis have distinct clinicomolecular features, favorable prognosis, and commonly exhibit inflammatory comorbidities

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Myelofibrosis (MF) is commonly diagnosed in older individuals and has not been extensively studied in young patients. Given the infrequent diagnosis in young patients, analyzing this cohort may identify factors that predict for disease development/progression. We retrospectively analyzed clinical/genomic characteristics, treatments, and outcomes of patients with MF aged 18–50 years (YOUNG) at diagnosis. Sixty-three YOUNG patients were compared to 663 patients diagnosed at 51 or older (OLDER). YOUNG patients were more likely to be female, harbor driving CALR mutations, lack splicing gene mutations, and have low-risk disease by dynamic international prognostic scoring system (DIPSS) at presentation. Thirty-six patients (60%) presented with incidental lab findings and 19 (32%) with symptomatic disease. Median time to first treatment was 9.4 months (mo). Fourteen (22%) YOUNG patients underwent allogeneic hematopoietic stem cell transplant (median 57.4 mo post-diagnosis). Five (8%) developed blast-phase disease (median 99 mo post-diagnosis). Median overall survival (OS) for YOUNG patients was not reached compared to 62.8 mo in OLDER cohort (p < 0.001). The survival advantage for YOUNG patients lost significance when compared to OLDER patients lacking splicing mutations (p = 0.11). Thirty-one (49%) had comorbidities predating MF diagnosis. Presence of a comorbidity correlated with increased disease risk as measured by serial DIPSS (p=0.02). Increased disease risk correlated with decreased OS (p = 0.05). MF is rare in young adults, has distinct clinical/molecular correlates, and a favorable prognosis. The high frequency of inflammatory comorbidities and their correlation with progression of disease risk clinically highlights the role of inflammation in MF pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author (ATK) upon reasonable request.

References

  1. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114(5):937–951

    Article  PubMed  CAS  Google Scholar 

  2. Tefferi A (2021) Primary myelofibrosis: 2021 update on diagnosis, risk-stratification and management. Am J Hematol 96(1):145–162

    Article  PubMed  CAS  Google Scholar 

  3. Boddu P, Masarova L, Verstovsek S, Strati P, Kantarjian H, Cortes J et al (2018) Patient characteristics and outcomes in adolescents and young adults with classical Philadelphia chromosome-negative myeloproliferative neoplasms. Ann Hematol 97(1):109–121

    Article  PubMed  Google Scholar 

  4. Iurlo A, Cattaneo D, Gianelli U (2019) Blast Transformation in Myeloproliferative Neoplasms: Risk Factors, Biological Findings, and Targeted Therapeutic Options. Int J Mol Sci 20(8):1839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Rampal R, Al-Shahrour F, Abdel-Wahab O, Patel JP, Brunel J-P, Mermel CH et al (2014) Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood 123(22):e123–ee33

    Article  PubMed  PubMed Central  Google Scholar 

  6. Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Pereira A et al (2010) A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 115(9):1703–1708

    Article  PubMed  CAS  Google Scholar 

  7. Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH et al (2014) CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 28(7):1472–1477

    Article  PubMed  CAS  Google Scholar 

  8. Barzilai M, Kirgner I, Avivi I, Ellis M, Dally N, Rozovski U et al (2019) Characteristics and outcomes of young adults with Philadelphia-negative myeloproliferative neoplasms. Eur J Haematol 102(6):504–508

  9. Beauverd Y, Alimam S, McLornan DP, Radia DH, Harrison CN (2016) Disease characteristics and outcomes in younger adults with primary and secondary myelofibrosis. Br J Haematol 175(1):37–42

    Article  PubMed  CAS  Google Scholar 

  10. Szuber N, Vallapureddy RR, Penna D, Lasho TL, Finke C, Hanson CA et al (2018) Myeloproliferative neoplasms in the young: Mayo Clinic experience with 361 patients age 40 years or younger. Am J Hematol 93(12):1474–1484

    Article  PubMed  CAS  Google Scholar 

  11. Palandri F, Latagliata R, Polverelli N, Tieghi A, Crugnola M, Martino B et al (2015) Mutations and long-term outcome of 217 young patients with essential thrombocythemia or early primary myelofibrosis. Leukemia 29(6):1344–1349

    Article  PubMed  CAS  Google Scholar 

  12. Barbui T, Thiele J, Carobbio A, Passamonti F, Rumi E, Randi ML et al (2012) Disease characteristics and clinical outcome in young adults with essential thrombocythemia versus early/prefibrotic primary myelofibrosis. Blood 120(3):569–571

    Article  PubMed  CAS  Google Scholar 

  13. Shalev O, Goldfarb A, Ariel I, Rachmilewitz E (1983) Myelofibrosis in young adults. Acta Haematol 70(6):396–399

    Article  PubMed  CAS  Google Scholar 

  14. Prins D, González Arias C, Klampfl T, Grinfeld J, Green AR (2020) Mutant Calreticulin in the Myeloproliferative Neoplasms. Hemasphere 4(1):e333

    Article  PubMed  PubMed Central  Google Scholar 

  15. Barosi G, Berzuini C, Liberato LN, Costa A, Polino G, Ascari E (1988) A prognostic classification of myelofibrosis with myeloid metaplasia. Br J Haematol 70(4):397–401

    Article  PubMed  CAS  Google Scholar 

  16. Cervantes F, Pereira A, Esteve J, Rafel M, Cobo F, Rozman C et al (1997) Identification of ‘short-lived’ and ‘long-lived’ patients at presentation of idiopathic myelofibrosis. Br J Haematol 97(3):635–640

    Article  PubMed  CAS  Google Scholar 

  17. Reilly JT, Snowden JA, Spearing RL, Fitzgerald PM, Jones N, Watmore A et al (1997) Cytogenetic abnormalities and their prognostic significance in idiopathic myelofibrosis: a study of 106 cases. Br J Haematol 98(1):96–102

    Article  PubMed  CAS  Google Scholar 

  18. Tefferi A, Mesa RA, Schroeder G, Hanson CA, Li C-Y, Dewald GW (2001) Cytogenetic findings and their clinical relevance in myelofibrosis with myeloid metaplasia. Br J Haematol 113(3):763–771

    Article  PubMed  CAS  Google Scholar 

  19. Barosi G, Mesa RA, Thiele J, Cervantes F, Campbell PJ, Verstovsek S et al (2008) Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the international working group for myelofibrosis research and treatment. Leukemia 22(2):437–438

    Article  PubMed  CAS  Google Scholar 

  20. Quintás-Cardama A, Kantarjian H, Pierce S, Cortes J, Verstovsek S (2013) Prognostic Model to Identify Patients With Myelofibrosis at the Highest Risk of Transformation to Acute Myeloid Leukemia. Clin Lymphoma Myeloma Leuk 13(3):315–8.e2

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cervantes F, Tassies D, Salgado C, Rovira M, Pereira A, Rozman C (1991) Acute transformation in nonleukemic chronic myeloproliferative disorders: actuarial probability and main characteristics in a series of 218 patients. Acta Haematol 85(3):124–127

    Article  PubMed  CAS  Google Scholar 

  22. Kristinsson SY, Landgren O, Samuelsson J, Bjorkholm M, Goldin LR (2010) Autoimmunity and the risk of myeloproliferative neoplasms. Haematologica. 95(7):1216–1220

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bak M, Jess T, Flachs EM, Zwisler AD, Juel K, Frederiksen H (2020) Risk of inflammatory bowel disease in patients with chronic myeloproliferative neoplasms: a Danish nationwide cohort study. Cancers (Basel) 12(9):2700

  24. Jayasuriya NA, Kjaergaard AD, Pedersen KM, Sorensen AL, Bak M, Larsen MK et al (2020) Smoking, blood cells and myeloproliferative neoplasms: meta-analysis and Mendelian randomization of 2.3 million people. Br J Haematol 189(2):323–334

    Article  PubMed  CAS  Google Scholar 

  25. Leiba A, Duek A, Afek A, Derazne E, Leiba M (2017) Obesity and related risk of myeloproliferative neoplasms among israeli adolescents. Obesity (Silver Spring) 25(7):1187–1190

    Article  PubMed  Google Scholar 

  26. Baumeister J, Chatain N, Sofias AM, Lammers T, Koschmieder S (2021) Progression of Myeloproliferative Neoplasms (MPN): Diagnostic and Therapeutic Perspectives. Cells 10(12):3551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gecht J, Tsoukakis I, Kricheldorf K, Stegelmann F, Klausmann M, Griesshammer M et al (2021) Kidney Dysfunction Is Associated with Thrombosis and Disease Severity in Myeloproliferative Neoplasms: Implications from the German Study Group for MPN Bioregistry. Cancers 13(16):4086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lucijanic M, Galusic D, Krecak I, Sedinic M, Holik H, Perisa V et al (2020) Reduced renal function strongly affects survival and thrombosis in patients with myelofibrosis. Ann Hematol 99(12):2779–2785

    Article  PubMed  CAS  Google Scholar 

  29. Hasselbalch HC (2013) Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? Leuk Res 37(2):214–220

    Article  PubMed  CAS  Google Scholar 

  30. Fisher DAC, Fowles JS, Zhou A, Oh ST (2021) Inflammatory Pathophysiology as a Contributor to Myeloproliferative Neoplasms. Front Immunol 12:683401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lussana F, Rambaldi A (2017) Inflammation and myeloproliferative neoplasms. J Autoimmun 85:58–63

    Article  PubMed  CAS  Google Scholar 

  32. Mendez Luque LF, Blackmon AL, Ramanathan G, Fleischman AG (2019) Key Role of Inflammation in Myeloproliferative Neoplasms: Instigator of Disease Initiation, Progression. and Symptoms. Curr Hematol Malig Rep 14(3):145–153

    Article  PubMed  PubMed Central  Google Scholar 

  33. Masselli E, Pozzi G, Gobbi G, Merighi S, Gessi S, Vitale M et al (2020) Cytokine Profiling in Myeloproliferative Neoplasms: Overview on Phenotype Correlation, Outcome Prediction, and Role of Genetic Variants. Cells 9(9):2136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Samuelson BT, Vesely SK, Chai-Adisaksopha C, Scott BL, Crowther M, Garcia D (2016) The impact of ruxolitinib on thrombosis in patients with polycythemia vera and myelofibrosis: a meta-analysis. Blood Coagul Fibrinolysis 27(6):648–652

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NPH and ATK designed the study, analyzed the data, and wrote the manuscript. ENF provided data analysis, interpretation, and critical revision. NAA collected and analyzed data. ZX, SY, AW, EP, DS, OC, JL, and RK provided patient data and critical revision of the manuscript.

Corresponding author

Correspondence to Andrew T. Kuykendall.

Ethics declarations

Human ethics and consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horvat, N.P., Abdallah, E.F., Xie, Z. et al. Young patients with myelofibrosis have distinct clinicomolecular features, favorable prognosis, and commonly exhibit inflammatory comorbidities. Ann Hematol 103, 117–123 (2024). https://doi.org/10.1007/s00277-023-05564-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05564-0

Keywords

Navigation