Skip to main content

Advertisement

Log in

A multicenter phase Ib trial of the histone deacetylase inhibitor entinostat in combination with pembrolizumab in patients with myelodysplastic syndromes/neoplasms or acute myeloid leukemia refractory to hypomethylating agents

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Patients with myelodysplastic syndromes/neoplasms (MDS) or acute myeloid leukemia (AML) with hypomethylating agent failure have a poor prognosis. Myeloid-derived suppressor cells (MDSCs) can contribute to MDS progression and mediate resistance to anti-PD1 therapy. As histone deacetylase inhibitors (HDACi) decrease MDSCs in preclinical models, we conducted an investigator-initiated, NCI-Cancer Therapy Evaluation Program-sponsored, multicenter, dose escalation, and expansion phase Ib trial (NCT02936752) of the HDACi entinostat and the anti-PD1 antibody pembrolizumab. Twenty-eight patients (25 MDS and 3 AML) were enrolled. During dose escalation (n=13 patients), there was one dose-limiting toxicity (DLT) on dose level (DL) 1 (G5 pneumonia/bronchoalveolar hemorrhage) and two DLTs at DL 2 (G3 pharyngeal mucositis and G3 anorexia). Per the 3 + 3 dose escalation design, DL 1 (entinostat 8 mg PO days 1 and 15 + pembrolizumab 200 mg IV day 1 every 21 days) was expanded and another 15 patients were enrolled. Hematologic adverse events (AEs) were common. The most common non-hematologic ≥G3 AEs were infection (32%), hypoxia/respiratory failure (11%), and dyspnea (11%). There were no protocol-defined responses among the 28 patients enrolled. Two patients achieved a marrow complete remission (mCR). Using a systems immunology approach with mass cytometry and machine learning analysis, mCR patients had increased classical monocytes and macrophages but there was no significant change of MDSCs. In conclusion, combining entinostat with pembrolizumab in patients with advanced MDS and AML was associated with limited clinical efficacy and substantial toxicity. Absence of an effect on MDSCs could be a potential explanation for the limited efficacy of this combination. ClinicalTrial.gov Identifier: NCT02936752.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, Schoch R, Gattermann N, Sanz G, List A, Gore SD, Seymour JF, Bennett JM, Byrd J, Backstrom J, Zimmerman L, McKenzie D, Beach C, Silverman LR, International Vidaza High-Risk MDSSSG (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 10(3):223–232. https://doi.org/10.1016/S1470-2045(09)70003-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zeidan AM, Stahl M, Hu X, Wang R, Huntington SF, Podoltsev NA, Gore SD, Ma X, Davidoff AJ (2018) Long-term survival of older patients with MDS treated with HMA therapy without subsequent stem cell transplantation. Blood 131(7):818–821. https://doi.org/10.1182/blood-2017-10-811729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sekeres MA, Othus M, List AF, Odenike O, Stone RM, Gore SD, Litzow MR, Buckstein R, Fang M, Roulston D, Bloomfield CD, Moseley A, Nazha A, Zhang Y, Velasco MR, Gaur R, Atallah E, Attar EC, Cook EK et al (2017) Randomized phase II study of azacitidine alone or in combination with lenalidomide or with vorinostat in higher-risk myelodysplastic syndromes and chronic myelomonocytic leukemia: North American Intergroup Study SWOG S1117. J Clin Oncol 35(24):2745–2753. https://doi.org/10.1200/JCO.2015.66.2510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Prébet T, Gore SD, Esterni B, Gardin C, Itzykson R, Thepot S, Dreyfus F, Rauzy OB, Recher C, Adès L, Quesnel B, Beach CL, Fenaux P, Vey N (2011) Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J Clin Oncol 29(24):3322–3327. https://doi.org/10.1200/jco.2011.35.8135

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nazha A, Sekeres MA, Komrokji R, Steensma DP, Kantarjian H, Roboz G, Fenaux P, Prebet T, Azarnia N, Zbyszewski PS, Fruchtman SM, Santini V, Silverman LR, Platzbecker U, Garcia-Manero G (2017) Validation of a post-hypomethylating agent failure prognostic model in myelodysplastic syndromes patients treated in a randomized controlled phase III trial of rigosertib vs. best supportive care. Blood Cancer J 7(12):644–644. https://doi.org/10.1038/s41408-017-0018-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Garcia-Manero G, Fenaux P, Al-Kali A, Baer MR, Sekeres MA, Roboz GJ, Gaidano G, Scott BL, Greenberg P, Platzbecker U, Steensma DP, Kambhampati S, Kreuzer K-A, Godley LA, Atallah E, Collins R, Kantarjian H, Jabbour E, Wilhelm FE et al (2016) Rigosertib versus best supportive care for patients with high-risk myelodysplastic syndromes after failure of hypomethylating drugs (ONTIME): a randomised, controlled, phase 3 trial. Lancet Oncol 17(4):496–508. https://doi.org/10.1016/S1470-2045(16)00009-7

    Article  PubMed  CAS  Google Scholar 

  7. Zeidan AM, Smith BD, Carraway HE, Gojo I, DeZern A, Gore SD (2017) A phase 2 trial of high dose lenalidomide in patients with relapsed/refractory higher-risk myelodysplastic syndromes and acute myeloid leukaemia with trilineage dysplasia. Br J Haematol 176(2):241–247. https://doi.org/10.1111/bjh.14407

    Article  PubMed  CAS  Google Scholar 

  8. Zeidan AM, Knaus HA, Robinson TM, Towlerton AMH, Warren EH, Zeidner JF, Blackford AL, Duffield AS, Rizzieri D, Frattini MG, Levy YM, Schroeder MA, Ferguson A, Sheldon KE, DeZern AE, Gojo I, Gore SD, Streicher H, Luznik L, Smith BD (2018) A multi-center phase I trial of ipilimumab in patients with myelodysplastic syndromes following hypomethylating agent failure. Clin Cancer Res 24(15):3519–3527. https://doi.org/10.1158/1078-0432.CCR-17-3763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Prebet T, Sun Z, Figueroa ME, Ketterling R, Melnick A, Greenberg PL, Herman J, Juckett M, Smith MR, Malick L, Paietta E, Czader M, Litzow M, Gabrilove J, Erba HP, Gore SD, Tallman MS (2014) Prolonged administration of azacitidine with or without entinostat for myelodysplastic syndrome and acute myeloid leukemia with myelodysplasia-related changes: results of the US Leukemia Intergroup trial E1905. J Clin Oncol 32(12):1242–1248. https://doi.org/10.1200/JCO.2013.50.3102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bewersdorf JP, Shallis R, Stahl M, Zeidan AM (2019) Epigenetic therapy combinations in acute myeloid leukemia: what are the options? Ther Adv Hematol 10:2040620718816698. https://doi.org/10.1177/2040620718816698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Williams P, Basu S, Garcia-Manero G, Hourigan CS, Oetjen KA, Cortes JE, Ravandi F, Jabbour EJ, Al-Hamal Z, Konopleva M, Ning J, Xiao L, Hidalgo Lopez J, Kornblau SM, Andreeff M, Flores W, Bueso-Ramos C, Blando J, Galera P et al (2019) The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer 125(9):1470–1481. https://doi.org/10.1002/cncr.31896

    Article  PubMed  CAS  Google Scholar 

  12. Toffalori C, Zito L, Gambacorta V, Riba M, Oliveira G, Bucci G, Barcella M, Spinelli O, Greco R, Crucitti L, Cieri N, Noviello M, Manfredi F, Montaldo E, Ostuni R, Naldini MM, Gentner B, Waterhouse M, Zeiser R et al (2019) Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat Med 25(4):603–611. https://doi.org/10.1038/s41591-019-0400-z

    Article  PubMed  CAS  Google Scholar 

  13. Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR, Fang Z, Nguyen M, Pierce S, Wei Y, Parmar S, Cortes J, Kantarjian H, Garcia-Manero G (2014) Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28(6):1280–1288. https://doi.org/10.1038/leu.2013.355

    Article  PubMed  CAS  Google Scholar 

  14. Zeidan AM, Boss I, Beach CL, Copeland WB, Thompson E, Fox BA, Hasle VE, Ogasawara K, Cavenagh J, Silverman LR, Voso MT, Hellmann A, Tormo M, O’Connor T, Previtali A, Rose S, Garcia-Manero G (2022) A randomized phase 2 trial of azacitidine with or without durvalumab as first-line therapy for higher-risk myelodysplastic syndromes. Blood Adv 6(7):2207–2218. https://doi.org/10.1182/bloodadvances.2021005487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zeidan AM, Boss I, Beach CL, Copeland WB, Thompson E, Fox BA, Hasle VE, Hellmann A, Taussig DC, Tormo M, Voso MT, Cavenagh J, O’Connor T, Previtali A, Rose S, Silverman LR (2022) A randomized phase 2 trial of azacitidine with or without durvalumab as first-line therapy for older patients with AML. Blood Adv 6(7):2219–2229. https://doi.org/10.1182/bloodadvances.2021006138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kim K, Skora AD, Li Z, Liu Q, Tam AJ, Blosser RL, Diaz LA Jr, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S (2014) Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci USA 111(32):11774–11779. https://doi.org/10.1073/pnas.1410626111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Adeshakin AO, Yan D, Zhang M, Wang L, Adeshakin FO, Liu W, Wan X (2020) Blockade of myeloid-derived suppressor cell function by valproic acid enhanced anti-PD-L1 tumor immunotherapy. Biochem Biophys Res Commun 522(3):604–611. https://doi.org/10.1016/j.bbrc.2019.11.155

    Article  PubMed  CAS  Google Scholar 

  18. Kittang AO, Kordasti S, Sand KE, Costantini B, Kramer AM, Perezabellan P, Seidl T, Rye KP, Hagen KM, Kulasekararaj A, Bruserud Ø, Mufti GJ (2016) Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome. Oncoimmunology 5(2):e1062208. https://doi.org/10.1080/2162402x.2015.1062208

    Article  PubMed  Google Scholar 

  19. Chen X, Eksioglu EA, Zhou J, Zhang L, Djeu J, Fortenbery N, Epling-Burnette P, Van Bijnen S, Dolstra H, Cannon J, Youn JI, Donatelli SS, Qin D, De Witte T, Tao J, Wang H, Cheng P, Gabrilovich DI, List A, Wei S (2013) Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest 123(11):4595–4611. https://doi.org/10.1172/jci67580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cheson BD, Greenberg PL, Bennett JM, Lowenberg B, Wijermans PW, Nimer SD, Pinto A, Beran M, de Witte TM, Stone RM, Mittelman M, Sanz GF, Gore SD, Schiffer CA, Kantarjian H (2006) Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood 108(2):419–425. https://doi.org/10.1182/blood-2005-10-4149

    Article  PubMed  CAS  Google Scholar 

  21. Ferrell PB Jr, Diggins KE, Polikowsky HG, Mohan SR, Seegmiller AC, Irish JM (2016) High-dimensional analysis of acute myeloid leukemia reveals phenotypic changes in persistent cells during induction therapy. PLoS One 11(4):e0153207. https://doi.org/10.1371/journal.pone.0153207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Greenplate AR, Johnson DB, Ferrell PB Jr, Irish JM (2016) Systems immune monitoring in cancer therapy. Eur J Cancer 61:77–84. https://doi.org/10.1016/j.ejca.2016.03.085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Irish JM, Myklebust JH, Alizadeh AA, Houot R, Sharman JP, Czerwinski DK, Nolan GP, Levy R (2010) B-cell signaling networks reveal a negative prognostic human lymphoma cell subset that emerges during tumor progression. Proc Natl Acad Sci USA 107(29):12747–12754. https://doi.org/10.1073/pnas.1002057107

    Article  PubMed  PubMed Central  Google Scholar 

  24. Roe CE, Hayes MJ, Barone SM, Irish JM (2020) Training novices in generation and analysis of high-dimensional human cell phospho-flow cytometry data. Curr Protoc Cytom 93(1):e71. https://doi.org/10.1002/cpcy.71

    Article  PubMed  PubMed Central  Google Scholar 

  25. Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, Ginhoux F, Newell EW (2019) Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol 37(1):38–44. https://doi.org/10.1038/nbt.4314

    Article  CAS  Google Scholar 

  26. Barone SM, Paul AGA, Muehling LM, Lannigan JA, Kwok WW, Turner RB, Woodfolk JA, Irish JM (2021) Unsupervised machine learning reveals key immune cell subsets in COVID-19, rhinovirus infection, and cancer therapy. eLife 10:e64653. https://doi.org/10.7554/eLife.64653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kramer KJ, Wilfong EM, Voss K, Barone SM, Shiakolas AR, Raju N, Roe CE, Suryadevara N, Walker LM, Wall SC, Paulo A, Schaefer S, Dahunsi D, Westlake CS, Crowe JE, Carnahan RH, Rathmell JC, Bonami RH, Georgiev IS, Irish JM (2022) Single-cell profiling of the antigen-specific response to BNT162b2 SARS-CoV-2 RNA vaccine. Nat Commun 13(1):3466. https://doi.org/10.1038/s41467-022-31142-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kotecha N, Krutzik PO, Irish JM (2010) Web-based analysis and publication of flow cytometry experiments. Curr Protoc Cytom Chapter 10(Unit10):17. https://doi.org/10.1002/0471142956.cy1017s53

    Article  Google Scholar 

  29. Prebet T, Sun Z, Ketterling RP, Zeidan A, Greenberg P, Herman J, Juckett M, Smith MR, Malick L, Paietta E, Czader M, Figueroa M, Gabrilove J, Erba HP, Tallman MS, Litzow M, Gore SD, Eastern Cooperative Oncology G, North American Leukemia i (2016) Azacitidine with or without entinostat for the treatment of therapy-related myeloid neoplasm: further results of the E1905 North American Leukemia Intergroup study. Br J Haematol 172(3):384–391. https://doi.org/10.1111/bjh.13832

    Article  PubMed  CAS  Google Scholar 

  30. Moreira JM, Scheipers P, Sørensen P (2003) The histone deacetylase inhibitor trichostatin A modulates CD4+ T cell responses. BMC Cancer 3:30. https://doi.org/10.1186/1471-2407-3-30

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dovey OM, Foster CT, Conte N, Edwards SA, Edwards JM, Singh R, Vassiliou G, Bradley A, Cowley SM (2013) Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice. Blood 121(8):1335–1344. https://doi.org/10.1182/blood-2012-07-441949

    Article  PubMed  CAS  Google Scholar 

  32. Rossi LE, Avila DE, Spallanzani RG, Ziblat A, Fuertes MB, Lapyckyj L, Croci DO, Rabinovich GA, Domaica CI, Zwirner NW (2012) Histone deacetylase inhibitors impair NK cell viability and effector functions through inhibition of activation and receptor expression. J Leukoc Biol 91(2):321–331. https://doi.org/10.1189/jlb.0711339

    Article  PubMed  CAS  Google Scholar 

  33. Ogbomo H, Michaelis M, Kreuter J, Doerr HW, Cinatl J (2007) Histone deacetylase inhibitors suppress natural killer cell cytolytic activity. FEBS Lett 581(7):1317–1322. https://doi.org/10.1016/j.febslet.2007.02.045

    Article  PubMed  CAS  Google Scholar 

  34. Tao J, Han D, Gao S, Zhang W, Yu H, Liu P, Fu R, Li L, Shao Z (2020) CD8(+) T cells exhaustion induced by myeloid-derived suppressor cells in myelodysplastic syndromes patients might be through TIM3/Gal-9 pathway. J Cell Mol Med 24(1):1046–1058. https://doi.org/10.1111/jcmm.14825

    Article  PubMed  CAS  Google Scholar 

  35. Lamble AJ, Kosaka Y, Laderas T, Maffit A, Kaempf A, Brady LK, Wang W, Long N, Saultz JN, Mori M, Soong D, LeFave CV, Huang F, Adams H 3rd, Loriaux MM, Tognon CE, Lo P, Tyner JW, Fan G et al (2020) Reversible suppression of T cell function in the bone marrow microenvironment of acute myeloid leukemia. Proc Natl Acad Sci USA 117(25):14331–14341. https://doi.org/10.1073/pnas.1916206117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Moskorz W, Cosmovici C, Jäger PS, Cadeddu RP, Timm J, Haas R (2021) Myelodysplastic syndrome patients display alterations in their immune status reflected by increased PD-L1-expressing stem cells and highly dynamic exhausted T-cell frequencies. Br J Haematol 193(5):941–945. https://doi.org/10.1111/bjh.17461

    Article  PubMed  CAS  Google Scholar 

  37. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM, Connolly AJ, Weissman IL (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545(7655):495–499. https://doi.org/10.1038/nature22396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zeidan AM, Cavenagh J, Voso MT, Taussig D, Tormo M, Boss I, Copeland WB, Gray VE, Previtali A, O’Connor T, Rose S, Beach C, Silverman LR (2019) Efficacy and safety of azacitidine (AZA) in combination with the anti-PD-L1 durvalumab (durva) for the front-line treatment of older patients (pts) with acute myeloid leukemia (AML) who are unfit for intensive chemotherapy (IC) and pts with higher-risk myelodysplastic syndromes (HR-MDS): results from a large, international, randomized phase 2 study. Blood 134(Supplement_1):829-829. https://doi.org/10.1182/blood-2019-122896

    Article  Google Scholar 

  39. Garcia-Manero G, Sasaki K, Montalban-Bravo G, Daver NG, Jabbour EJ, Alvarado Y, DiNardo CD, Ravandi F, Borthakur G, Bose P, Pemmaraju N, Naqvi K, Cortes JE, Kadia TM, Konopleva MY, Colla S, Yang H, Rausch CR, Gasior Y et al (2018) A phase II study of nivolumab or ipilimumab with or without azacitidine for patients with myelodysplastic syndrome (MDS). Blood 132(Suppl 1):465–465. https://doi.org/10.1182/blood-2018-99-119424

    Article  Google Scholar 

  40. Bewersdorf JP, Shallis RM, Zeidan AM (2020) Immune checkpoint inhibition in myeloid malignancies: moving beyond the PD-1/PD-L1 and CTLA-4 pathways. Blood Rev:100709. https://doi.org/10.1016/j.blre.2020.100709

  41. Kim TK, Han X, Hu Q, Hedgepath C, Hong J, Park J, Mason EF, Chen L (2022) Programmed death-1 homolog (PD-1H/VISTA) blockade confers a synergistic anti-leukemia effect with PD-1 blockade. Blood 140(Supplement 1):87–88. https://doi.org/10.1182/blood-2022-158314

    Article  Google Scholar 

Download references

Acknowledgements

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. government.

Funding

This study was supported by the National Cancer Institute of the National Institutes of Health under the NCI-Cancer Therapy Evaluation Program (NCI-CTEP). Amer M Zeidan was supported by a Leukemia and Lymphoma Society Scholar in Clinical Research award. Tae Kon Kim was supported by a Conquer Cancer Foundation of ASCO Career Development Award.

Author information

Authors and Affiliations

Authors

Contributions

AZ, SG, ES, RL, RP, WW and TKK designed the study. AY, YM, JZ, JA, OO, SY, RMS, TK, NAP, SH, and AMZ treated patients on the clinical trial. SP, RR, CER, JMI, and TKK performed correlative experiments. JPB, AC, WW, TKK, and AMZ analyzed data and wrote the initial draft of the manuscript. All authors reviewed and contributed to subsequent drafts of the manuscripts. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Jan Philipp Bewersdorf, Tae Kon Kim or Amer M. Zeidan.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. The study protocol was approved by the Ethics Committees at all participating sites.

Conflict of interest

RMS received honoraria from BMS and Gilead. AY had an advisory role for Incyte, CTI Pharma, Pharmaessentia, Pfizer, Novartis, ACCELERON PHARMA, Servier, AbbVie, Apellis, Gilead, Notable Labs, and Celgene. JFZ received research funding from AbbVie, Gilead, Arog, Astex, Jazz, Merck, Stemline, Sumitomo Dainippon Pharma, Syndax, and Takeda and had a consultancy/received honoraria from AbbVie, BMS, Genentech, Gilead, Immunogen, Servier, and Shattuck Labs. JKA was a member of Data Monitoring Committee for GlycoMimetics and a had consulting or Advisory Role for AbbVie, Astellas Pharma, BioSight, Bluebird Bio, Curio, Daiichi Sankyo, Gilead, Kura Oncology, Kymera, MDEducation, Rigel, Stemline Therapeutics, and Syros. JKA received research funding (all to institution) from AbbVie, Agios, ALX Oncology, Amgen, Amphivena, Aprea AB, Aptose Biosciences, Astellas, Pharma, BioSight, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Cyclacel, Fujifilm, Immunogen, Kartos Therapeutics, Kura Oncology, Loxo, and Pfizer. YFM has received honoraria/consulting fees from Kura Oncology, BluePrint Medicines, GERON, OncLive, and MD Education. YFM participated in advisory boards and received honoraria from Sierra Oncology, Stemline Therapeutics, Blueprint Medicines, Morphosys, Taiho Oncology, Rigel Pharmaceuticals, and Novartis. YFM received travel reimbursement from Blueprint Medicines, MD Education, and Morphosys. NAP received consulting fees from Pfizer, Agios Pharmaceuticals, Blueprint Medicines, Incyte, Novartis, Celgene/Bristol-Myers Squibb, CTI BioPharma, PharmaEssentia, Constellation Pharmaceuticals, and AbbVie; other financial support for serving on an Independent Data Review Committee for Cogent Biosciences. OO had a consultancy with Abbvie; Impact Biomedicines; Celgene; Novartis; BMS; Taiho Pharmaceutical; CTI; Threadwell therapeutics; and Bristol-Myers Squibb/Celgene and received research funding (all to the institution) from Celgene, Incyte, Astex Pharmaceuticals, NS Pharma, Abbvie, Janssen Oncology, OncoTherapy Science, Agios, AstraZeneca, CTI BioPharma Corp, Kartos Therapeutics, Aprea AB. SH had a consultancy with Forma Therapeutics. TKK received research funding from Nextcure and had a consultancy with Agenus. AMZ participated in advisory boards, and/or had a consultancy with and received honoraria from AbbVie, Pfizer, Celgene/BMS, Jazz, Incyte, Agios, Servier, Boehringer-Ingelheim, Novartis, Astellas, Daiichi Sankyo, Geron, Taiho, Seattle Genetics, Otsuka, BeyondSpring, Takeda, Ionis, Amgen, Janssen, Genentech, Epizyme, Syndax, Gilead, Kura, Chiesi, ALX Oncology, BioCryst, Notable, Orum, Mendus, Zentalis, Schrodinger, Regeneron, Syros, and Tyme. None of these relationships was related to the content of this manuscript. All other authors report no relevant conflicts of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tae Kon Kim and Amer M. Zeidan are co-senior and co-corresponding authors.

Supplementary information

ESM 1

(DOCX 35 kb)

ESM 2

(PDF 822 kb)

ESM 3

(PDF 650 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bewersdorf, J.P., Shallis, R.M., Sharon, E. et al. A multicenter phase Ib trial of the histone deacetylase inhibitor entinostat in combination with pembrolizumab in patients with myelodysplastic syndromes/neoplasms or acute myeloid leukemia refractory to hypomethylating agents. Ann Hematol 103, 105–116 (2024). https://doi.org/10.1007/s00277-023-05552-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05552-4

Keywords

Navigation