Skip to main content

Advertisement

Log in

Second primary malignancies in non-Hodgkin lymphoma: epidemiology and risk factors

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

With the advancements in therapeutics for non-Hodgkin lymphoma (NHL), the long-term survival of patients with NHL has markedly increased. Second primary malignancies (SPMs) have become an increasingly relevant long-term concern for NHL survivors. The etiology of SPMs is multifactorial and involves multiple steps. Germline alterations, immune dysregulation, and clonal hematopoiesis contribute to the accumulation of intrinsic adverse factors, and external factors such as lifestyle; exposure to infectious factors; and late effects of radiotherapy, chemotherapy, high-dose therapy, and autologous hematopoietic stem cell transplantation further increase SPM risk. Therapy-related myeloid neoplasms (t-MNs) are a devastating complication of cytotoxic chemotherapeutic agents. However, as targeted therapies begin to replace cytotoxic chemotherapy, the incidence of t-MNs is likely to decline, particularly for indolent B-cell NHL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Siegel RL, Miller KD, Fuchs HE et al (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33

    Article  Google Scholar 

  2. Howlader N (2022) SEER cancer statistics review 1975–2016. National Cancer Institute publishing the SEER web site. https://seer.cancer.gov/csr/1975_2016/. Accessed 28 Mar 2022

  3. Liu W, Ji X, Song Y et al (2020) Improving survival of 3760 patients with lymphoma: experience of an academic center over two decades. Cancer Med 9:3765–3774

    Article  Google Scholar 

  4. Brennan P, Scelo G, Hemminki K et al (2005) Second primary cancers among 109 000 cases of non-Hodgkin’s lymphoma. Br J Cancer 93:159–166

    Article  CAS  Google Scholar 

  5. Tward JD, Wendland MM, Shrieve DC et al (2006) The risk of secondary malignancies over 30 years after the treatment of non-Hodgkin lymphoma. Cancer 107:108–115

    Article  Google Scholar 

  6. Hemminki K, Lenner P, Sundquist J et al (2008) Risk of subsequent solid tumors after non-Hodgkin’s lymphoma: effect of diagnostic age and time since diagnosis. J Clin Oncol 26:1850–1857

    Article  Google Scholar 

  7. Chien SH, Liu CJ, Hong YC et al (2015) Development of second primary malignancy in patients with non-Hodgkin lymphoma: a nationwide population-based study. J Cancer Res Clin Oncol 141:1995–2004

    Article  CAS  Google Scholar 

  8. Tadmor T, Liphshitz I, Silverman B et al (2017) Incidence and epidemiology of non-Hodgkin lymphoma and risk of second malignancy among 22 466 survivors in Israel with 30 years of follow-up. Hematol Oncol 35:599–607

    Article  CAS  Google Scholar 

  9. Sacchi S, Marcheselli L, Bari A et al (2008) Secondary malignancies after treatment for indolent non-Hodgkin’s lymphoma: a 16-year follow-up study. Haematologica 93:398–404

    Article  Google Scholar 

  10. Liu X, Sato N, Shimosato Y et al (2022) CHIP-associated mutant ASXL1 in blood cells promotes solid tumor progression. Cancer Sc 113:1182–1194

    Article  CAS  Google Scholar 

  11. Ishdorj G, Beiggi S, Nugent Z et al (2019) Risk factors for skin cancer and solid tumors in newly diagnosed patients with chronic lymphocytic leukemia and the impact of skin surveillance on survival. Leuk Lymphoma 60:3204–3213

    Article  Google Scholar 

  12. Kumar V, Ailawadhi S, Bojanini L et al (2019) Trends in the risk of second primary malignancies among survivors of chronic lymphocytic leukemia. Blood Cancer J 9:75

    Article  Google Scholar 

  13. Lu Y, Wang SS, Reynolds P et al (2011) Cigarette smoking, passive smoking, and non-Hodgkin lymphoma risk: evidence from the California Teachers Study. Am J Epidemiol 174:563–573

    Article  Google Scholar 

  14. Moser EC, Noordijk EM, van Leeuwen FE et al (2006) Risk of second cancer after treatment of aggressive non-Hodgkin’s lymphoma; an EORTC cohort study. Haematologica 91:1481–1488

    Google Scholar 

  15. Larsson SC, Wolk A (2007) Obesity and risk of non-Hodgkin’s lymphoma: a meta-analysis. Int J Cancer 121:1564–1570

    Article  CAS  Google Scholar 

  16. Avgerinos KI, Spyrou N, Mantzoros CS et al (2019) Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism 92:121–135

    Article  CAS  Google Scholar 

  17. Kim SS, Ruiz VE, Carroll JD et al (2011) Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma. Cancer Lett 305:228–238

    Article  CAS  Google Scholar 

  18. Melenotte C, Mezouar S, Mege JL et al (2020) Bacterial infection and non-Hodgkin’s lymphoma. Crit Rev Microbiol 46:270–287

    Article  CAS  Google Scholar 

  19. Li M, Gan Y, Fan C et al (2018) Hepatitis B virus and risk of non-Hodgkin lymphoma: an updated meta-analysis of 58 studies. J Viral Hepat 25:894–903

    Article  CAS  Google Scholar 

  20. Engels EA, Cho ER, Jee SH (2010) Hepatitis B virus infection and risk of non-Hodgkin lymphoma in South Korea: a cohort study. Lancet Oncol 11:827–834

    Article  Google Scholar 

  21. Khaled H, Abu-Taleb F, Haggag R (2017) Hepatitis C virus and non-Hodgkin’s lymphomas: a minireview. J Adv Res 8:131–137

    Article  CAS  Google Scholar 

  22. Khoury T, Chen S, Adar T et al (2014) Hepatitis C infection and lymphoproliferative disease: accidental comorbidities? World J Gastroenterol 20:16197–16202

    Article  CAS  Google Scholar 

  23. Yarchoan R, Uldrick TS (2018) HIV-associated cancers and related diseases. N Engl J Med 378:1029–1041

    Article  Google Scholar 

  24. Morton LM, Curtis RE, Linet MS et al (2010) Second malignancy risks after non-Hodgkin’s lymphoma and chronic lymphocytic leukemia: differences by lymphoma subtype. J Clin Oncol 28:4935–4944

    Article  Google Scholar 

  25. Farrell PJ (2019) Epstein-Barr virus and cancer. Annu Rev Pathol 14:29–53

    Article  CAS  Google Scholar 

  26. Thompson MP, Kurzrock R (2004) Epstein-Barr virus and cancer. Clin Cancer Res 10:803–821

    Article  CAS  Google Scholar 

  27. Herr MM, Schonfeld SJ, Dores GM et al (2019) Risk for malignancies of infectious etiology among adult survivors of specific non-Hodgkin lymphoma subtypes. Blood Adv 3:1961–1969

    Article  Google Scholar 

  28. Chattopadhyay S, Zheng G, Sud A et al (2020) Second primary cancers in non-Hodgkin lymphoma: family history and survival. Int J Cancer 146:970–976

    Article  CAS  Google Scholar 

  29. Lu C, Xie M, Wendl MC et al (2015) Patterns and functional implications of rare germline variants across 12 cancer types. Nat Commun 6:10086

    Article  CAS  Google Scholar 

  30. Wang Z, Wilson CL, Armstrong GT et al (2019) Association of germline BRCA2 mutations with the risk of pediatric or adolescent non-Hodgkin lymphoma. JAMA Oncol 5:1362–1364

    Article  Google Scholar 

  31. Yoshida R (2021) Hereditary breast and ovarian cancer (HBOC): review of its molecular characteristics, screening, treatment, and prognosis. Breast Cancer 28:1167–1180

    Article  Google Scholar 

  32. Lynch HT, Snyder CL, Shaw TG et al (2015) Milestones of Lynch syndrome: 1895–2015. Nat Rev Cancer 15:181–194

    Article  CAS  Google Scholar 

  33. Wang X, Song Y, Chen W et al (2021) Germline variants of DNA repair genes in early onset mantle cell lymphoma. Oncogene 40:551–563

    Article  CAS  Google Scholar 

  34. Ripperger T, Schlegelberger B (2016) Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. Eur J Med Genet 59:133–142

    Article  Google Scholar 

  35. Choi M, Kipps T, Kurzrock R (2016) ATM mutations in cancer: Therapeutic Implications. Mol Cancer Ther 15:1781–1791

    Article  CAS  Google Scholar 

  36. Tiao G, Improgo MR, Kasar S et al (2017) Rare germline variants in ATM are associated with chronic lymphocytic leukemia. Leukemia 31:2244–2247

    Article  CAS  Google Scholar 

  37. Stolarova L, Kleiblova P, Janatova M et al (2020) CHEK2 germline variants in cancer predisposition: stalemate rather than checkmate. Cells 9:2675

    Article  CAS  Google Scholar 

  38. Dragoo DD, Taher A, Wong VK et al (2021) PTEN hamartoma tumor syndrome/Cowden syndrome: genomics, oncogenesis, and imaging review for associated lesions and malignancy. Cancers (Basel) 13:3120

    Article  CAS  Google Scholar 

  39. Galli E, Malafronte R, Brugnoletti F et al (2020) Burkitt lymphoma as fourth neoplasia in a patient affected by Cowden syndrome with a novel PTEN germline pathogenic variant. Mediterr J Hematol Infect Dis 12:e2020034

    Article  Google Scholar 

  40. Adib E, El Zarif T, Nassar AH et al (2022) CDH1 germline variants are enriched in patients with colorectal cancer, gastric cancer, and breast cancer. Br J Cancer 126:797–803

    Article  CAS  Google Scholar 

  41. Jacobs G, Hellmig S, Huse K et al (2011) Polymorphisms in the 3′-untranslated region of the CDH1 gene are a risk factor for primary gastric diffuse large B-cell lymphoma. Haematologica 96:987–995

    Article  CAS  Google Scholar 

  42. Steffen J, Maneva G, Popławska L et al (2006) Increased risk of gastrointestinal lymphoma in carriers of the 657del5 NBS1 gene mutation. Int J Cancer 119:2970–2973

    Article  CAS  Google Scholar 

  43. Toh M, Ngeow J (2021) Homologous recombination deficiency: cancer predispositions and treatment implications. Oncologist 26:e1526–e1537

    Article  CAS  Google Scholar 

  44. Chattopadhyay S, Sud A, Zheng G et al (2018) Second primary cancers in non-Hodgkin lymphoma: bidirectional analyses suggesting role for immune dysfunction. Int J Cancer 143:2449–2457

    Article  CAS  Google Scholar 

  45. Kim JS, Liu Y, Ha KH et al (2020) Increasing incidence of B-cell non-Hodgkin lymphoma and occurrence of second primary malignancies in South Korea: 10-year follow-up using the Korean National Health Information Database. Cancer Res Treat 52:1262–1272

    CAS  Google Scholar 

  46. Falchi L, Vitale C, Keating MJ et al (2016) Incidence and prognostic impact of other cancers in a population of long-term survivors of chronic lymphocytic leukemia. Ann Oncol 27:1100–1106

    Article  CAS  Google Scholar 

  47. Royle JA, Baade PD, Joske D et al (2011) Second cancer incidence and cancer mortality among chronic lymphocytic leukaemia patients: a population-based study. Br J Cancer 105:1076–1081

    Article  CAS  Google Scholar 

  48. Shah BK, Khanal A (2015) Second primary malignancies in mantle cell lymphoma: a US population-based study. Anticancer Res 35:3437–3440

    Google Scholar 

  49. Timilsina S, Damato A, Budhathoki N et al (2022) Characterization of second primary malignancies in mucosa-associated lymphoid tissue lymphomas: a SEER database interrogation. Clin Lymphoma Myeloma Leuk 22:76–81

    Article  Google Scholar 

  50. Jiang S, Zhen H, Jiang H (2020) Second primary malignancy in diffuse large B-cell lymphoma patients: a SEER database analysis. Curr Probl Cancer 44:100502

    Article  Google Scholar 

  51. Giri S, Bhatt VR, Verma V et al (2017) Risk of second primary malignancies in patients with follicular lymphoma: a United States population-based study. Clin Lymphoma Myeloma Leuk 17:569–574

    Article  Google Scholar 

  52. Major A, Smith DE, Ghosh D et al (2020) Risk and subtypes of secondary primary malignancies in diffuse large B-cell lymphoma survivors change over time based on stage at diagnosis. Cancer 126:189–201

    Article  Google Scholar 

  53. Bond DA, Huang Y, Fisher JL et al (2020) Second cancer incidence in CLL patients receiving BTK inhibitors. Leukemia 34:3197–3205

    Article  CAS  Google Scholar 

  54. Mudie NY, Swerdlow AJ, Higgins CD et al (2006) Risk of second malignancy after non-Hodgkin’s lymphoma: a British cohort study. J Clin Oncol 24:1568–1574

    Article  Google Scholar 

  55. Flinn IW, van der Jagt R, Kahl B (2019) First-line treatment of patients with indolent non-Hodgkin lymphoma or mantle-cell lymphoma with bendamustine plus rituximab versus R-CHOP or R-CVP: results of the BRIGHT 5-year follow-up study. J Clin Oncol 37:984–991

    Article  CAS  Google Scholar 

  56. Hiddemann W, Barbui AM, Canales MA et al (2018) Immunochemotherapy with obinutuzumab or rituximab for previously untreated follicular lymphoma in the GALLIUM study: influence of chemotherapy on efficacy and safety. J Clin Oncol 36:2395–2404

    Article  CAS  Google Scholar 

  57. Olszewski AJ, Butera JN, Reagan JL et al (2020) Outcomes of bendamustine- or cyclophosphamide-based first-line chemotherapy in older patients with indolent B-cell lymphoma. Am J Hematol 95:354–361

    Article  CAS  Google Scholar 

  58. Damlaj M, El Fakih R, Hashmi SK (2019) Evolution of survivorship in lymphoma, myeloma and leukemia: metamorphosis of the field into long term follow-up care. Blood Rev 33:63–73

    Article  Google Scholar 

  59. Pirani M, Marcheselli R, Marcheselli L et al (2011) Risk for second malignancies in non-Hodgkin’s lymphoma survivors: a meta-analysis. Ann Oncol 22:1845–1858

    Article  CAS  Google Scholar 

  60. Xu Y, Wang H, Zhou S et al (2013) Risk of second malignant neoplasms after cyclophosphamide-based chemotherapy with or without radiotherapy for non-Hodgkin lymphoma. Leuk Lymphoma 54:1396–1404

    Article  CAS  Google Scholar 

  61. Brown JR, Yeckes H, Friedberg JW et al (2005) Increasing incidence of late second malignancies after conditioning with cyclophosphamide and total-body irradiation and autologous bone marrow transplantation for non-Hodgkin’s lymphoma. J Clin Oncol 23:2208–2214

    Article  CAS  Google Scholar 

  62. Smeland KB, Kiserud CE, Lauritzsen GF et al (2016) A national study on conditional survival, excess mortality and second cancer after high dose therapy with autologous stem cell transplantation for non-Hodgkin lymphoma. Br J Haematol 173:432–443

    Article  CAS  Google Scholar 

  63. Tarella C, Passera R, Magni M et al (2011) Risk factors for the development of secondary malignancy after high-dose chemotherapy and autograft, with or without rituximab: a 20-year retrospective follow-up study in patients with lymphoma. J Clin Oncol 29:814–824

    Article  CAS  Google Scholar 

  64. Forrest DL, Nevill TJ, Naiman SC et al (2003) Second malignancy following high-dose therapy and autologous stem cell transplantation: incidence and risk factor analysis. Bone Marrow Transplant 32:915–923

    Article  CAS  Google Scholar 

  65. Tao L, Clarke CA, Rosenberg AS et al (2017) Subsequent primary malignancies after diffuse large B-cell lymphoma in the modern treatment era. Br J Haematol 178:72–80

    Article  CAS  Google Scholar 

  66. Prusila REI, Sorigue M, Jauhiainen J et al (2019) Risk of secondary haematological malignancies in patients with follicular lymphoma: an analysis of 1028 patients treated in the rituximab era. Br J Haematol 187:364–371

    Article  CAS  Google Scholar 

  67. Fleury I, Chevret S, Pfreundschuh M et al (2016) Rituximab and risk of second primary malignancies in patients with non-Hodgkin lymphoma: a systematic review and meta-analysis. Ann Oncol 27:390–397

    Article  CAS  Google Scholar 

  68. Benjamini O, Jain P, Trinh L et al (2015) Second cancers in patients with chronic lymphocytic leukemia who received frontline fludarabine, cyclophosphamide and rituximab therapy: distribution and clinical outcomes. Leuk Lymphoma 56:1643–1650

    Article  CAS  Google Scholar 

  69. Al-Sawaf O, Zhang C, Tandon M et al (2020) Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): follow-up results from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 21:1188–1200

    Article  CAS  Google Scholar 

  70. Blombery P, Lew TE, Dengler MA et al (2022) Clonal hematopoiesis, myeloid disorders and BAX-mutated myelopoiesis in patients receiving venetoclax for CLL. Blood 139:1198–1207

    Article  CAS  Google Scholar 

  71. Chong EA, Ruella M, Schuster SJ (2021) Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy. N Engl J Med 384:673–674

    Article  Google Scholar 

  72. Genovese G, Kähler AK, Handsaker RE et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477–2487

    Article  Google Scholar 

  73. Busque L, Patel JP, Figueroa ME et al (2012) Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 44:1179–1181

    Article  CAS  Google Scholar 

  74. Abou Zahr A, Kavi AM, Mukherjee S et al (2017) Therapy-related myelodysplastic syndromes, or are they? Blood Rev 31:119–128

    Article  Google Scholar 

  75. Takahashi K (2019) Germline polymorphisms and the risk of therapy-related myeloid neoplasms. Best Pract Res Clin Haematol 32:24–30

    Article  Google Scholar 

  76. Klener P (2019) Advances in molecular biology and targeted therapy of mantle cell lymphoma. Int J Mol Sci 20:4417

    Article  CAS  Google Scholar 

  77. Higgins A, Shah MV (2020) Genetic and genomic landscape of secondary and therapy-related acute myeloid leukemia. Genes (Basel) 11:749

    Article  CAS  Google Scholar 

  78. Gibson CJ, Lindsley RC, Tchekmedyian V et al (2017) Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma. J Clin Oncol 35:1598–1605

    Article  CAS  Google Scholar 

  79. Gramegna D, Bertoli D, Cattaneo C et al (2022) The role of clonal hematopoiesis as driver of therapy-related myeloid neoplasms after autologous stem cell transplantation. Ann Hematol 101:1227–1237

    Article  CAS  Google Scholar 

  80. Attygalle AD, Dobson R, Chak PK et al (2022) Parallel evolution of two distinct lymphoid proliferations in clonal haematopoiesis. Histopathology 80:847–858

    Article  Google Scholar 

  81. Epperla N, Pham AQ, Burnette BL et al (2017) Risk of histological transformation and therapy-related myelodysplasia/acute myeloid leukaemia in patients receiving radioimmunotherapy for follicular lymphoma. Br J Haematol 178:427–433

    Article  CAS  Google Scholar 

  82. Denizon N, Baugier de Materre A, Alani M et al (2018) Significant impact of immunosuppression on the incidence of secondary malignancies following fludarabine, cyclophosphamide, and rituximab (FCR) treatment in patients with indolent B-cell neoplasms. Leuk Lymphoma 59:2711–2714

    Article  CAS  Google Scholar 

  83. Lenz G, Dreyling M, Schiegnitz E et al (2004) Moderate increase of secondary hematologic malignancies after myeloablative radiochemotherapy and autologous stem-cell transplantation in patients with indolent lymphoma: results of a prospective randomized trial of the German Low Grade Lymphoma Study Group. J Clin Oncol 22:4926–4933

    Article  Google Scholar 

  84. Kalaycio M, Rybicki L, Pohlman B et al (2006) Risk factors before autologous stem-cell transplantation for lymphoma predict for secondary myelodysplasia and acute myelogenous leukemia. J Clin Oncol 24:3604–3610

    Article  Google Scholar 

  85. Hosing C, Munsell M, Yazji S et al (2002) Risk of therapy-related myelodysplastic syndrome/acute leukemia following high-dose therapy and autologous bone marrow transplantation for non-Hodgkin’s lymphoma. Ann Oncol 13:450–459

    Article  CAS  Google Scholar 

  86. Baker KS, DeFor TE, Burns LJ et al (2003) New malignancies after blood or marrow stem-cell transplantation in children and adults: incidence and risk factors. J Clin Oncol 21:1352–1358

    Article  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Agency of Jilin Province (20200201591JC).

Author information

Authors and Affiliations

Authors

Contributions

Ou Bai conceived the idea for the review. Xin Wan searched the literature. Zhumei Zhan wrote the manuscript. Wei Guo generated the figure. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Ou Bai.

Ethics declarations

Ethics approval

The manuscript does not contain clinical studies or patient data.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Z., Guo, W., Wan, X. et al. Second primary malignancies in non-Hodgkin lymphoma: epidemiology and risk factors. Ann Hematol 102, 249–259 (2023). https://doi.org/10.1007/s00277-023-05095-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05095-8

Keywords

Navigation