Skip to main content

Advertisement

Log in

Poor potential of proliferation and differentiation in bone marrow mesenchymal stem cells derived from children with severe aplastic anemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The pathogenesis of severe aplastic anemia (SAA) has not been completely understood, and insufficiency of the hematopoietic microenvironment can be an important factor. Here, we compared the basic properties of mesenchymal stem cells (MSCs), a major component of bone marrow microenvironment, from five SAA children with those of MSCs from five controls. Although MSCs from SAA children and controls were similar in morphology and immunophenotypic profile, SAA MSCs had slower expansion rate and smaller cumulative population doubling (1.83 ± 1.21 vs 3.36 ± 0.87; p = 0.046), indicating lower proliferative capacity. After osteogenic induction, SAA MSCs showed lower alkaline phosphatase activity (optical density, 1.46 ± 0.04 vs 2.27 ± 0.32; p = 0.013), less intense von Kossa staining, and lower gene expression of core binding factor α1 (0.0015 ± 0.0005 vs 0.0056 ± 0.0017; p = 0.013). Following adipogenic induction, SAA MSCs showed less intense Oil red O staining (optical density, 0.86 ± 0.22 vs 1.73 ± 0.42; p = 0.013) and lower lipoprotein lipase expression (0.0105 ± 0.0074 vs 0.0527 ± 0.0254; p = 0.013). These findings provided evidence that defects in bone marrow MSCs of SAA children do exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Montane E, Ibanez L, Vidal X, Ballarin E, Puig R, Garcia N, Laporte J-R, Catalan Group for Study of Agranulocytosis and Aplastic Anemia (2008) Epidemiology of aplastic anemia: a prospective multicenter study. Haematologica 93:518–523

    Article  PubMed  Google Scholar 

  2. Davies JK, Guinan EC (2007) An update on the management of severe idiopathic aplastic anaemia in children. Br J Haematol 136:549–564

    Article  CAS  PubMed  Google Scholar 

  3. Kurre P, Johnson FL, Deeg HJ (2005) Diagnosis and treatment of children with aplastic anemia. Pediatr Blood Cancer 45:770–780

    Article  PubMed  Google Scholar 

  4. Young NS, Calado RT, Scheinberg P (2006) Current concepts in the pathophysiology and treatment of aplastic anemia. Blood 108:2509–2519

    Article  CAS  PubMed  Google Scholar 

  5. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390

    CAS  PubMed  Google Scholar 

  6. Lazennec G, Jorgensen C (2008) Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells 26:1387–1394

    Article  CAS  PubMed  Google Scholar 

  7. Sorrentino A, Ferracin M, Castelli G, Biffoni M, Tomaselli G, Baiocchi M, Fatica A, Negrini M, Peschle C, Valtieri M (2008) Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Exp Hematol 36:1035–1046

    Article  CAS  PubMed  Google Scholar 

  8. Tocci A, Forte L (2003) Mesenchymal stem cell: use and perspectives. Hematol J 4:92–96

    Article  PubMed  Google Scholar 

  9. Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28:875–884

    Article  CAS  PubMed  Google Scholar 

  10. Verfaillie CM (1993) Soluble factor(s) produced by human bone marrow stroma increase cytokine-induced proliferation and maturation of primitive hematopoietic progenitors while preventing their terminal differentiation. Blood 82:2045–2053

    CAS  PubMed  Google Scholar 

  11. Gordon MY (1988) Extracellular matrix of the marrow microenvironment. Br J Haematol 70:1–4

    Article  CAS  PubMed  Google Scholar 

  12. Wu X, Li Y, Zhu K, Wang Z, Chen S, Yang L (2007) Gata-1, -2 and -3 genes expression in bone marrow microenvironment with chronic aplastic anemia. Hematology 12:331–335

    Article  CAS  PubMed  Google Scholar 

  13. Bacigalupo A, Valle M, Podesta M, Pitto A, Zocchi E, De Flora A, Pozzi S, Luchetti S, Frassoni F, Van Lint MT, Piaggio G (2005) T-cell suppression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia. Exp Hematol 33:819–827

    Article  CAS  PubMed  Google Scholar 

  14. Scopes J, Ismail M, Marks KJ, Rutherford TR, Draycott GS, Pocock C, Gordon-Smith EC, Gibson FM (2001) Correction of stromal cell defect after bone marrow transplantation in aplastic anaemia. Br J Haematol 115:642–652

    Article  CAS  PubMed  Google Scholar 

  15. Holmberg LA, Seidel K, Leisenring W, Torok-Storb B (1994) Aplastic anemia: analysis of stromal cell function in long-term marrow cultures. Blood 84:3685–3690

    CAS  PubMed  Google Scholar 

  16. Hotta T, Kato T, Maeda H, Yamao H, Yamada H, Saito H (1985) Functional changes in marrow stromal cells in aplastic anaemia. Acta Haematol 74:65–69

    Article  CAS  PubMed  Google Scholar 

  17. Camitta BM, Thomas ED, Nathan DG, Santos G, Gordon-Smith EC, Gale RP, Rappeport JM, Storb R (1976) Severe aplastic anemia: a prospective study of the effect of early marrow transplantation on acute mortality. Blood 48:63–70

    CAS  PubMed  Google Scholar 

  18. Chang YJ, Shih DT, Tseng CP, Hsieh TB, Lee DC, Hwang SM (2006) Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells 24:679–685

    Article  CAS  PubMed  Google Scholar 

  19. Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, Han ZB, Xu ZS, Lu YX, Liu D, Chen ZZ, Han ZC (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91:1017–1026

    CAS  PubMed  Google Scholar 

  20. Secco M, Zucconi E, Vieira NM, Fogaca LL, Cerqueira A, Carvalho MD, Jazedje T, Okamoto OK, Muotri AR, Zatz M (2008) Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells 26:146–150

    Article  CAS  PubMed  Google Scholar 

  21. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392

    Article  CAS  PubMed  Google Scholar 

  22. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  CAS  PubMed  Google Scholar 

  23. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416

    Article  CAS  PubMed  Google Scholar 

  24. Yu M, Xiao Z, Shen L, Li L (2004) Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not. Br J Haematol 124:666–675

    Article  PubMed  Google Scholar 

  25. Wang H-S, Hung S-C, Peng S-T, Huang C-C, Wei H-M, Guo Y-J, Fu Y-S, Lai M-C, Chen C-C (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337

    Article  PubMed  Google Scholar 

  26. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121:368–374

    Article  PubMed  Google Scholar 

  27. in’t Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL, Beekhuizen W, Willemze R, Kanhai HH, Fibbe WE (2003) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88:845–852

    Google Scholar 

  28. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402

    Article  CAS  PubMed  Google Scholar 

  29. Dubey S, Shukla P, Nityanand S (2005) Expression of interferon-gamma and tumor necrosis factor-alpha in bone marrow T cells and their levels in bone marrow plasma in patients with aplastic anemia. Ann Hematol 84:572–577

    Article  CAS  PubMed  Google Scholar 

  30. Hara T, Ando K, Tsurumi H, Moriwaki H (2004) Excessive production of tumor necrosis factor-alpha by bone marrow T lymphocytes is essential in causing bone marrow failure in patients with aplastic anemia. Eur J Haematol 73:10–16

    Article  CAS  PubMed  Google Scholar 

  31. Hirano N, Butler MO, Von Bergwelt-Baildon MS, Maecker B, Schultze JL, O’Connor KC, Schur PH, Kojima S, Guinan EC, Nadler LM (2003) Autoantibodies frequently detected in patients with aplastic anemia. Blood 102:4567–4575

    Article  CAS  PubMed  Google Scholar 

  32. Maciejewski J, Selleri C, Anderson S, Young NS (1995) Fas antigen expression on CD34+ human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood 85:3183–3190

    CAS  PubMed  Google Scholar 

  33. Rizzo S, Scopes J, Elebute MO, Papadaki HA, Gordon-Smith EC, Gibson FM (2002) Stem cell defect in aplastic anemia: reduced long term culture-initiating cells (LTC-IC) in CD34+ cells isolated from aplastic anemia patient bone marrow. Hematol J 3:230–236

    Article  PubMed  Google Scholar 

  34. Ball SE, Gibson FM, Rizzo S, Tooze JA, Marsh JC, Gordon-Smith EC (1998) Progressive telomere shortening in aplastic anemia. Blood 91:3582–3592

    CAS  PubMed  Google Scholar 

  35. Scopes J, Daly S, Atkinson R, Ball SE, Gordon-Smith EC, Gibson FM (1996) Aplastic anemia: evidence for dysfunctional bone marrow progenitor cells and the corrective effect of granulocyte colony-stimulating factor in vitro. Blood 87:3179–3185

    CAS  PubMed  Google Scholar 

  36. Marsh JC, Chang J, Testa NG, Hows JM, Dexter TM (1990) The hematopoietic defect in aplastic anemia assessed by long-term marrow culture. Blood 76:1748–1757

    CAS  PubMed  Google Scholar 

  37. Li N, Feugier P, Serrurrier B, Latger-Cannard V, Lesesve J-F, Stoltz J-F, Eljaafari A (2007) Human mesenchymal stem cells improve ex vivo expansion of adult human CD34+ peripheral blood progenitor cells and decrease their allostimulatory capacity. Exp Hematol 35:507–515

    Article  CAS  PubMed  Google Scholar 

  38. Van Overstraeten-Schlogel N, Beguin Y, Gothot A (2006) Role of stromal-derived factor-1 in the hematopoietic-supporting activity of human mesenchymal stem cells. Eur J Haematol 76:488–493

    Article  PubMed  Google Scholar 

  39. Zhang Y, Li C, Jiang X, Zhang S, Wu Y, Liu B, Tang P, Mao N (2004) Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol 32:657–664

    Article  CAS  PubMed  Google Scholar 

  40. Wang J-F, Wang L-J, Wu Y-F, Xiang Y, Xie C-G, Jia B-B, Harrington J, McNiece IK (2004) Mesenchymal stem/progenitor cells in human umbilical cord blood as support for ex vivo expansion of CD34(+) hematopoietic stem cells and for chondrogenic differentiation. Haematologica 89:837–844

    CAS  PubMed  Google Scholar 

  41. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307–316

    CAS  PubMed  Google Scholar 

  42. Lazarus HM, Koc ON, Devine SM, Curtin P, Maziarz RT, Holland HK, Shpall EJ, McCarthy P, Atkinson K, Cooper BW, Gerson SL, Laughlin MJ, Loberiza FR Jr, Moseley AB, Bacigalupo A (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11:389–398

    Article  PubMed  Google Scholar 

  43. Rubinstein P, Carrier C, Scaradavou A, Kurtzberg J, Adamson J, Migliaccio AR, Berkowitz RL, Cabbad M, Dobrila NL, Taylor PE, Rosenfield RE, Stevens CE (1998) Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 339:1565–1577

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported partially by grants from the China Medical University Hospital (grant ref. NO. DMR-98-037) and Taoyuan General Hospital Project (PTH9809).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Hsi Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, YH., Peng, CT., Harn, HJ. et al. Poor potential of proliferation and differentiation in bone marrow mesenchymal stem cells derived from children with severe aplastic anemia. Ann Hematol 89, 715–723 (2010). https://doi.org/10.1007/s00277-009-0892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-009-0892-6

Keywords

Navigation