Abstract
The demethylating effect of 5-aza-2′ deoxycytidine (decitabine, DAC) has been well characterized. The molecular events downstream of methylation inhibition are less well known. Here, DAC was shown to induce apoptosis in acute myeloid leukemia (AML) cells (p53 mutant and wild type) but not in epithelial or normal peripheral blood mononuclear cells. Apoptosis was characterized by activation of the mitochondrial but not the receptor death pathway, as demonstrated by the release of cytochrome c and loss of mitochondrial membrane potential. Western blotting and enzyme assays showed that caspase-3, but not caspase-6 or caspase-8, were activated. Decitabine induced expression of the cell cycle inhibitor p21, arresting AML cell lines in G1 of the cell cycle. Expression of p21 was induced irrespective of the methylation status of its promoter, mediated instead via reexpression of the tumor suppressor p73, an upstream regulator of p21. The promoter of p73 was hypermethylated in AML cell lines in vitro and in primary AML cells ex vivo but not in DAC-resistant epithelial cells. In conclusion, DAC acts on leukemic myeloid cells via caspase activation, which may be dependent on demethylation of the hypermethylated p73 promoter and consequent reexpression of p73.




Similar content being viewed by others
References
Aparicio A, Eads CA, Leong LA, Laird PW, Newman EM, Synold TW, Baker SD, Zhao M, Weber JS (2003) Phase I trial of continuous infusion 5-aza-2′-deoxycytidine. Cancer Chemother Pharmacol 51:231–239
Chylicki K, Ehinger M, Svedberg H, Gullberg U (2000) Characterization of the molecular mechanisms for p53-mediated differentiation. Cell Growth Differ 11:561–571
Daskalakis M, Nguyen TT, Nguyen C, Guldberg P, Köhler G, Wijermans P, Jones PA, Lübbert M (2002) Demethylation of a hypermethylated p16/INK4B gene in patients with myeloblastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 100:2957–2964
Dotto GP (2000) p21(WAF1/Cip1): more than a break to the cell cycle? Biochim Biophys Acta 1471:43–56
el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumour suppression. Cell 75:817–825
Fleckenstein DS, Uphoff CC, Drexler HG, Quentmeier H (2002) Detection of p53 gene mutations by single strand conformational polymorphism (SSCP) in human acute myeloid leukemia-derived cell lines. Leuk Res 26:207–214
Fournel M, Sapieha P, Beaulieu N, Besterman JM, MacLeod AR (1999) Down-regulation of human DNA-(cytosine-5) methyltransferase induces cell cycle regulators p16(ink4A) and p21(WAF/Cip1) by distinct mechanisms. J Biol Chem 274:24250–24256
Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312
Irwin MS, Kondo K, Marin MC, Cheng LS, Hahn WC, Kaelin WG Jr (2003) Chemosensitivity linked to p73 function. Cancer Cell 3:403–410
Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S, Bayar E, Lyons J, Rosenfeld CS, Cortes J, Kantarjian HM (2003) Phase I study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (Decitabine) in hematopoietic malignancies. Blood 6:6
Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428
Kantarjian HM, O'Brien S, Cortes J, Giles FJ, Faderl S, Issa JP, Garcia-Manero G, Rios MB, Shan J, Andreeff M, Keating M, Talpaz M (2003) Results of decitabine (5-aza-2′deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. Cancer 98:522–528
Kawano S, Miller CW, Gombart AF, Bartram CR, Matsuo Y, Asou H, Sakashita A, Said J, Tatsumi E, Koeffler HP (1999) Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 94:1113–1120
Lavelle D, Chen YH, Hankewych M, DeSimone J (2001) Histone deacetylase inhibitors increase p21(WAF1) and induce apoptosis of human myeloma cell lines independent of decreased IL-6 receptor expression. Am J Hematol 68:170–178
Melino G, Bernassola F, Ranalli M, Yee K, Zong WX, Corazzari M, Knight RA, Green DR, Thompson C, Vousden KH (2004) p73 induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem 279:8076–8083
Milutinovic S, Knox JD, Szyf M (2000) DNA methyltransferase inhibition induces the transcription of the tumour suppressor p21(WAF1/CIP1/sdi1). J Biol Chem 275:6353–6359
Robertson KD (2001) DNA methylation, methyltransferases, and cancer. Oncogene 20:3139–3155
Roman-Gomez J, Castillejo J-A, Jimenez A, Gonzalez MG, Moreno F, Rodriguez MdC, Barrios M, Maldonado J, Torres A (2002) 5′ CpG island hypermethylation is associated with transcriptional silencing of the p21CIP/WAF1/SDI1 gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 99:2291–2296
Schmelz K, Wagner M, Dörken B, Tamm I (2005) 5-Aza-2′-deoxycytidine induces p21WAF expression by demethylation of p73 leading to p53-independent apoptosis in myeloid leukaemia. Int J Cancer 114:683–695
Stirewalt DL, Clurman B, Appelbaum FR, Willman CL, Radich JP et al (1999) p73 mutations and expression in adult de novo acute myelogenous leukemia. Leukemia 13:985–990
Terui T, Murakami K, Takimoto R, Takahashi M, Takada K, Murakami T, Minami S, Matsunaga T, Takayama T, Kato J, Niitsu Y (2003) Induction of PIG3 and NOXA through acetylation of p53 at 320 and 373 lysine residues as a mechanism for apoptotic cell death by histone deacetylase inhibitors. Cancer Res 63:8948–8954
Wijermans P, Lubbert M, Verhoef G, Bosly A, Ravoet C, Andre M, Ferrant A (2000) Low-dose 5-aza-2′deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 18:956–962
Yang A, Kaghad M, Caput D, McKeon F (2002) On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet 18:90–95
Acknowledgements
We would like to thank Martina Runge for excellent technical assistance, Gerry Melino for providing p73 plasmids, and Wolf-Dieter Ludwig for providing the primary AML samples. Portions of this paper are reprinted with permission from Wiley and Sons [19]. This work was supported by grants from the Deutsche Forschungsgemeinschaft.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tamm, I., Wagner, M. & Schmelz, K. Decitabine activates specific caspases downstream of p73 in myeloid leukemia. Ann Hematol 84 (Suppl 1), 47–53 (2005). https://doi.org/10.1007/s00277-005-0013-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00277-005-0013-0