Skip to main content
Log in

A computed tomography study on the olfactory fossa in dried skulls

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

The computed tomography (CT) study investigates the olfactory fossa (OF) morphometry and morphology.

Methods

Fifty Greek adult dried skulls were macroscopically investigated for the detection of the OF morphological patterns and after a multiplanar CT reconstruction, the OF morphometry was accurately calculated using a digital ruler.

Results

Types I and II surface contour patterns were the most frequently identified (36 and 32%), followed by types III, IV, and V (16, 12, and 4%). Crista galli mean length, height, and width were 19.46 ± 2.34 mm, 12.69 ± 2.7 mm, and 5.18 ± 1.11 mm. The OF mean maximum length was 22.29 ± 2.16 mm on the right and 22.10 ± 2.44 mm on the left side, and symmetry was detected. The OF median values of the maximum depth for its anterior, middle, and posterior third were 4.91 mm, 4.72 mm, and 2.78 mm on the right and 4.55 mm, 4.75 mm, and 2.55 mm on the left side. Symmetry was observed in any third of the OF. The OF median values of the surface maximum width for the anterior, middle, and posterior thirds were 9.29 mm, 11.48 mm, and 13.07 mm. A significant gradual increase of the OF surface maximum width was detected in the anteroposterior direction in the total sample (p < 0.001), with the highest value (23.12 mm) in the posterior third. A significant (p < 0.001) very strong (rs = −0.798) and a moderate (rs = −0.524) negative linear correlation in the OF anterior and middle third were, respectively, identified between its maximum depth and width. No gender impact was identified.

Conclusions

The study helps to familiarize with the calculation of the OF dimensions and simplifies the understanding of its complex anatomy, to reach successful surgical planning and minimize perioperative complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adeel M, Ikram M, Rajput MS, Arain A, Khattak YJ (2013) Asymmetry of lateral lamella of the cribriform plate: a software-based analysis of coronal computed tomography and its clinical relevance in endoscopic sinus surgery. Surg Radiol Anat 35:843–847. https://doi.org/10.1007/s00276-013-1106-4

    Article  PubMed  Google Scholar 

  2. Alazzawi S, Omar R, Rahmat K, Alli K (2012) Radiological analysis of the ethmoid roof in the Malaysian population. Auris Nasus Larynx 39:393–396. https://doi.org/10.1016/j.anl.2011.10.002

    Article  PubMed  Google Scholar 

  3. Babu AC, Nair M, Kuriakose AM (2018) Olfactory fossa depth: CT analysis of 1200 patients. Indian J Radiol Imaging 28:395–400. https://doi.org/10.4103/ijri.IJRI_119_18

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chong VF, Fan YF, Lau D, Sethi DS (1998) Functional endoscopic sinus surgery (FESS): what radiologists need to know. Clin Radiol 53:650–658. https://doi.org/10.1016/s0009-9260(98)80291-2

    Article  CAS  PubMed  Google Scholar 

  5. Coelho DH, Pence TS, Abdel-Hamid M, Costanzo RM (2018) Cribriform plate width is highly variable within and between subjects. Auris Nasus Larynx 45:1000–1005. https://doi.org/10.1016/j.anl.2018.01.013

    Article  PubMed  Google Scholar 

  6. Gauba V, Saleh GM, Dua G, Agarwal S, Ell S, Vize C (2006) Radiological classification of anterior skull base anatomy prior to performing medial orbital wall decompression. Orbit 25:93–96. https://doi.org/10.1080/01676830600674627

    Article  CAS  PubMed  Google Scholar 

  7. Giannetti AV, Guimarães RE, Santiago AP, Perpétuo FO, Machado MA (2012) A tomographic study of the skull base in primary spontaneous cerebrospinal fluid leaks. Neuroradiology 54:459–466. https://doi.org/10.1007/s00234-011-0901-z

    Article  PubMed  Google Scholar 

  8. Gupta P, Ramesh P (2017) Radiological observation of ethmoid roof on basis of keros classification and its application in endonasal surgery. Int J Anat Res 5:4204–4207. https://doi.org/10.16965/ijar.2017.284

    Article  Google Scholar 

  9. Jacob TG, Kaul JM (2014) Morphology of the olfactory fossa—a new look. J Anat Soc India 63:30–35. https://doi.org/10.1016/j.jasi.2014.04.006

    Article  Google Scholar 

  10. Jones TM, Almahdi JM, Bhalla RK, Lewis-Jones H, Swift AC (2002) The radiological anatomy of the anterior skull base. Clin Otolaryngol Allied Sci 27:101–105. https://doi.org/10.1046/j.1365-2273.2002.00540.x

    Article  CAS  PubMed  Google Scholar 

  11. Kainz J, Stammberger H (1988) Das Dach des vorderen Siebbeines: Ein Locus minoris resistentiae an der Schädelbasis [The roof of the anterior ethmoid: a locus minoris resistentiae in the skull base]. Laryngol Rhinol Otol (Stuttg) 67:142–149

    Article  CAS  Google Scholar 

  12. Kaplanoglu H, Kaplanoglu V, Dilli A, Toprak U, Hekimoğlu B (2013) An analysis of the anatomic variations of the paranasal sinuses and ethmoid roof using computed tomography. Eurasian J Med 45:115–125. https://doi.org/10.5152/eajm.2013.23

    Article  PubMed  PubMed Central  Google Scholar 

  13. Keros P (1962) On the practical value of differences in the level of the lamina cribrosa of the ethmoid. Z Laryngol Rhinol Otol 41:809–813

    CAS  PubMed  Google Scholar 

  14. Komut E, Golpinar M (2021) A comprehensive morphometric analysis of crista galli for sex determination with a novel morphological classification on computed tomography images. Surg Radiol Anat 43:1989–1998

    Article  Google Scholar 

  15. Krmpotić-Nemanić J, Vinter I, Judas M (1997) Transformation of the shape of the ethmoid bone during the course of life. Eur Arch Otorhinolaryngol 254:347–349. https://doi.org/10.1007/BF02630727

    Article  PubMed  Google Scholar 

  16. Lebowitz RA, Terk A, Jacobs JB, Holliday RA (2001) Asymmetry of the ethmoid roof: analysis using coronal computed tomography. Laryngoscope 111:2122–2124. https://doi.org/10.1097/00005537-200112000-00007

    Article  CAS  PubMed  Google Scholar 

  17. McMains KC (2008) Safety in endoscopic sinus surgery. Curr Opin Otolaryngol Head Neck Surg 16:247–251. https://doi.org/10.1097/MOO.0b013e3282fdccad

    Article  PubMed  Google Scholar 

  18. Nair S (2012) Importance of ethmoidal roof in endoscopic sinus surgery. Otolaryngology 1:251. https://doi.org/10.4172/scientificreports.251

    Article  Google Scholar 

  19. Nitinavakarn B, Thanaviratananich S, Sangsilp N (2005) Anatomical variations of the lateral nasal wall and paranasal sinuses: A CT study for endoscopic sinus surgery (ESS) in Thai patients. J Med Assoc Thai 88:763–768

    PubMed  Google Scholar 

  20. Psaltis AJ, Schlosser RJ, Banks CA, Yawn J, Soler ZM (2012) A systematic review of the endoscopic repair of cerebrospinal fluid leaks. Otolaryngol Head Neck Surg 147:196–203. https://doi.org/10.1177/0194599812451090

    Article  PubMed  Google Scholar 

  21. Savvateeva DM, Güldner C, Murthum T, Bien S, Teymoortash A, Werner JA, Bremke M (2010) Digital volume tomography (DVT) measurements of the olfactory cleft and olfactory fossa. Acta Otolaryngol 130:398–404. https://doi.org/10.3109/00016480903283741

    Article  PubMed  Google Scholar 

  22. Skorek A, Tretiakow D, Szmuda T, Przewozny T (2017) Is the Keros classification alone enough to identify patients with the “dangerous ethmoid”? An anatomical study. Acta Otolaryngol 137:196–201. https://doi.org/10.1080/00016489.2016.1225316

    Article  PubMed  Google Scholar 

  23. Souza SA, Souza MMAd, Idagawa M, Wolosker ÂMB, Ajzen SA (2008) Computed tomography assessment of the ethmoid roof: a relevant region at risk in endoscopic sinus surgery. Radiol Bras 41:143–147. https://doi.org/10.1590/S0100-39842008000300003

    Article  Google Scholar 

  24. Stammberger HR, Kennedy DW (1995) Paranasal sinuses: anatomic terminology and nomenclature. Ann Otol Rhinol Laryngol 104:7–16. https://doi.org/10.1177/000348949510410s01

    Article  Google Scholar 

  25. Stankiewicz JA (1987) Complications of endoscopic intranasal ethmoidectomy. Laryngoscope 97:1270–1273. https://doi.org/10.1288/00005537-198711000-00004

    Article  CAS  PubMed  Google Scholar 

  26. Terrier F, Weber W, Ruefenacht D, Porcellini B (1985) Anatomy of the ethmoid: CT, endoscopic, and macroscopic. AJR 144:493–500. https://doi.org/10.2214/ajr.144.3.493

    Article  CAS  PubMed  Google Scholar 

  27. Ulualp SO (2008) Complications of endoscopic sinus surgery: appropriate management of complications. Curr Opin Otolaryngol Head Neck Surg 16:252–259. https://doi.org/10.1097/MOO.0b013e3282fdc3b2

    Article  PubMed  Google Scholar 

  28. Vasvári G, Reisch R, Patonay L (2005) Surgical anatomy of the cribriform plate and adjacent areas. Minin Invasive Neurosurg 48:25–33. https://doi.org/10.1055/s-2004-830180

    Article  Google Scholar 

  29. Welch KC, Palmer JN (2008) Intraoperative emergencies during endoscopic sinus surgery: CSF leak and orbital hematoma. Otolaryngol Clin North Am 41:581. https://doi.org/10.1016/j.otc.2008.01.005

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the head of the radiological department of the general hospital of Nikaia-Piraeus, Mr. Panayiotis Kazakidis, and his technical staff for their assistance in the computed tomography (CT) scan of the studied sample. The authors are also grateful to the donors, who chose to offer their bodies and tissues (skulls) to medical education and anatomy research.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

PP: protocol and project development, data collection and analysis, manuscript writing and editing; VX: data collection and manuscript editing; MP: project development, data management, and analysis, manuscript writing, editing, and supervision; MF, KN, TK: literature search, project advice, manuscript editing.

Corresponding author

Correspondence to Maria Piagkou.

Ethics declarations

Conflict of interest

All authors have nothing to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

276_2022_2949_MOESM1_ESM.jpg

Supplementary file 1 Morphological patterns of the cribriform plate contour, intracranially (I-V types) based on Kawahara et al. (1968) classification (JPG 49 KB)

276_2022_2949_MOESM2_ESM.jpg

Supplementary file 2 Multiplanar reconstructions (MPR) of the computed tomography scan images of a skull. Blue line: sagittal, yellow line: axial, and pink line: coronal planes, A: anterior, P: posterior, R: Right, and L: left (JPG 52 KB)

276_2022_2949_MOESM3_ESM.jpg

Supplementary file 3 Calculation of the intracranial crista galli maximum length using the multiplanar reconstruction (MPR) mode. Blue line: sagittal, yellow line: axial, and pink line: coronal planes, A: anterior, P: posterior, R: Right, and L: left (JPG 106 KB)

276_2022_2949_MOESM4_ESM.jpg

Supplementary file 4 Calculation of the intracranial crista galli maximum height using the multiplanar reconstruction (MPR) mode. Blue line: sagittal, yellow line: axial, and pink line: coronal planes, A: anterior, P: posterior, R: right, and L: left (JPG 38 KB)

276_2022_2949_MOESM5_ESM.jpg

Supplementary file 5 Calculation of the intracranial crista galli maximum width using the multiplanar reconstruction (MPR) mode. Blue line: sagittal, yellow line: axial, and pink line: coronal planes, A: anterior, P: posterior, R: right, and L: left (JPG 76 KB)

276_2022_2949_MOESM6_ESM.jpg

Supplementary file 6 Calculation of the olfactory fossa length on both sides of a skull. Blue line: sagittal, yellow line: axial, and pink line: coronal planes, A: anterior, P: posterior, R: right, and L: left (JPG 129 KB)

276_2022_2949_MOESM7_ESM.jpg

Supplementary file 7 Olfactory fossa (OF) division into (anterior, middle, and posterior) thirds in an axial plane based on the calculated OF length on the right (21.51 ÷ 3=7.17) and left (21.06 ÷ 3=7.02) side, A: anterior, P: posterior (JPG 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papadopoulos-Manolarakis, P., Xenaki, V., Fratzoglou, M. et al. A computed tomography study on the olfactory fossa in dried skulls. Surg Radiol Anat 44, 925–932 (2022). https://doi.org/10.1007/s00276-022-02949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-022-02949-0

Keywords

Navigation