Skip to main content

Advertisement

Log in

Morphogenesis of the posterior inferior cerebellar artery with three-dimensional reconstruction of the late embryonic vertebrobasilar system

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

The posterior inferior cerebellar artery (PICA) shows the most variable course among the cerebellar arteries, mainly at the level of the lateral medullary segment. Based on the correlation between the level of origin and the characteristics of the lateromedullary segment, we have proposed three patterns of course of the PICA. With the aim of understanding their embryological basis we review the interrelations between the developing cerebellum and the primitive hindbrain arterial plexus through the analysis of transverse serial sections of human embryos of 22.5 and 23 mm crown-rump length. Three-dimensional reconstruction of the vertebrobasilar system has been performed to study the morphology of the vascular networks. The cerebellar primordium is vascularized by the metencephalic plexus that will form the basilar artery and the superior cerebellar arteries. Due to the development of the pontine flexure the rhomboid lips approach and the cerebellum comes into contact with the myelencephalon; thus the myelencephalic plexus represents an acquired source of vascularization for the cerebellum with respect to the metencephalic plexus. The examination of the transverse sections shows that the vertebral and basilar arteries, superior cerebellar arteries, anterior inferior cerebellar arteries, and primitive lateral vertebrobasilar anastomoses are well recognizable. The three-dimensional reconstruction of the vessels shows that the PICA is not yet defined due to the persistence of a plexus of many thin vessels at the level of the lateral aspect of the myelencephalon, indicating that its origin and course are established at the end of the embryonic period. Based on the evolution of the primitive hindbrain plexus, we suggest that in synchrony with the progressive descent of the cerebellum the branches of the myelencephalic plexus succeed with a rostrocaudal progression in feeding the cerebellum and the morphogenesis of the PICA results from the selection of portions of this plexus. The high origin of the PICA from the basilar artery could be ascribed to its development from a rostral collateral of the plexus due to an early development of the vessel at the beginning of its embryonic lifetime. Moreover, the three patterns of course of the PICA could reflect the variable retention of the primitive lateral vertebrobasilar anastomosis in the trunk of the definitive PICA, which may be related to its level of origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 Fig. 2 Fig. 3a,b Fig. 4a,b

Similar content being viewed by others

References

  1. Adachi B (1928) Das Arteriensystem der Japaner, vol 1. Imperial Japanese University of Kyoto Press, Kyoto, pp 119–134

  2. De Caro R, Parenti A, Munari PF (1991) Fenestration of the vertebrobasilar junction. Acta Neurochir (Wien) 108:85–87

    Google Scholar 

  3. De Caro R, Parenti A, Munari PF (1995) Course of the caudal hypoglossal rootlet through the vertebral artery. J Anat 187:499–501

    Google Scholar 

  4. De Caro R, Serafini MT, Galli S, Parenti A, Guidolin D, Munari PF (1995) Anatomy of segmental duplication in the human basilar artery. Possible site of aneurysm formation. Clin Neuropathol 14:303–309

    Google Scholar 

  5. De Caro R, Parenti A, Munari PF (1996) Persistent primitive lateral vertebrobasilar anastomosis. Acta Neurochir (Wien) 138:592–594

    Google Scholar 

  6. Heimans JJ, Valk J, Lohman AHM (1985) Angiographic anatomy of the anterior inferior cerebellar artery. Springer, Berlin Heidelberg New York

  7. His W (1890) Die Entwickelung des menschlichen Rautenhirns vom Ende des ersten bis zum Beginn des dritten Monats. Abh K S Ges Wissensch 29:1–75

    Google Scholar 

  8. Lake AR, Van Niekerk IJ, Le Roux CG, Trevor-Jones TR, De Wet PD (1990) Angiology of the brain of the baboon Papio ursinus, the velvet monkey Cercopithecus pygerithrus, and the bushbaby Galago senegalensis. Am J Anat 187:277–286

    Google Scholar 

  9. Larsen WJ (1993) Human embryology. Churchill Livingston, New York

  10. Lasjaunias P, Guibert-Trainer F, Braun JP (1981) The pharyngo-cerebellar artery or ascending pharyngeal artery origin of the posterior inferior cerebellar artery. J Neuroradiol 8:317–325

    Google Scholar 

  11. Lasjaunias P, Vallée B, Person H, Ter Brugge K, Chiu M (1985) The lateral spinal artery of the upper cervical spinal cord. Anatomy, normal variations and angiographic aspects. J Neurosurg 63:235–241

    Google Scholar 

  12. Lasjaunias P, Berenstein A, ter Brugge KG (2001) Surgical neuroangiography. Springer, Berlin Heidelberg New York

  13. Lister JR, Rhoton AL Jr, Matsushima T, Peace DA (1982) Microsurgical anatomy of the posterior inferior cerebellar artery. Neurosurgery 10:170–199

    Google Scholar 

  14. Macchi V, Porzionato A, Parenti A, De Caro R (2004) The course of the posterior inferior cerebellar artery may be related to its level of origin. Surg Radiol Anat 26:60–65

    Article  Google Scholar 

  15. Margolis MT, Newton TH (1972) Borderlands of the normal and abnormal posterior inferior cerebellar artery. Acta Radiol Diagn (Stockh) 13:163–176

    Google Scholar 

  16. Margolis MT, Newton TH (1974) The posterior inferior cerebellar artery. In: Newton TH (ed) Radiology of the skull and brain: angiography. Mosby, St Louis pp 1710–1744

  17. Müller F, O’Rahilly R (1990) The human rhombencephalon at the end of the embryonic period proper. Am J Anat 189:127–145

    Google Scholar 

  18. Noden DM (1991) Development of craniofacial blood vessels. In: Feinberg RN, Sherer GK, Auerbach R (eds) The development of the vascular system. Issues Biomed 14:1–24

    Google Scholar 

  19. Noden DM, Li X (1991) Patterns of initial vascular development in the avian brain. Anat Rec 229:65A

    Google Scholar 

  20. O’Rahilly R, Müller F (1992) Human embryology and teratology. Wiley Liss, New York, pp 268–272

  21. O’Rahilly R, Müller F (2003) Somites, spinal ganglia, and centra. Enumeration and interrelationships in staged human embryos, and implications for neural tube defects. Cells Tissues Organs 173:75–92

    Article  PubMed  Google Scholar 

  22. O’Rahilly R, Müller F, Bossy J (1986) Atlas des stades du développement des formes extérieures de l’encéphale chez l’embryon humain. Arch Anat Histol Embryol Norm Exp 69:3–39

    Google Scholar 

  23. Padget DH (1948) The development of the cranial arteries in the human embryo. Contrib Embryol Carnegie Inst 32:205–262

    Google Scholar 

  24. Sadler TW (2000) Langman’s medical embryology. Williams & Wilkins, Baltimore, pp 374–412

  25. Stopford JSB (1916) The arteries of the pons and medulla oblongata. J Anat Physiol 50:131–164

    Google Scholar 

  26. Williams PL, Bannister LH, Berry MM, Collins P, Dyson M, Dussek JE, Ferguson MWJ (eds) (1995) Gray’s anatomy, 38th edn. Churchill Livingstone, London

Download references

Acknowledgements

The authors are grateful to Giuliano Carlesso for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. De Caro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macchi, V., Porzionato, A., Guidolin, D. et al. Morphogenesis of the posterior inferior cerebellar artery with three-dimensional reconstruction of the late embryonic vertebrobasilar system. Surg Radiol Anat 27, 56–60 (2005). https://doi.org/10.1007/s00276-004-0303-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-004-0303-6

Keywords

Navigation