Skip to main content

Advertisement

Log in

Bone Consolidation: A Practical Guide for the Interventional Radiologist

  • REVIEW
  • Musculoskeletal Interventions
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

In recent years, interventional radiologists have been increasingly involved in the management of bone fractures resulting from benign (osteoporosis and trauma), as well as malignant (tumor-related impending or pathologic fractures) conditions. Interventional techniques used to fix fractures include image-guided osteoplasty, screw-mediated osteosynthesis, or combinations of both. In the present narrative review, we highlight the most common clinical scenarios that may benefit from such interventional techniques with specific focus on spine, pelvic ring, and long bones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4.
Fig. 5.
Fig. 6
Fig. 7.
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cazzato RL, Garnon J, Shaygi B, et al. Percutaneous consolidation of bone metastases: strategies and techniques. Insights Imaging. 2019;10(1):14. https://doi.org/10.1186/s13244-019-0709-7.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J. 1994;3(4):184–201. https://doi.org/10.1007/BF02221591.

    Article  CAS  PubMed  Google Scholar 

  3. Kallmes DF, Comstock BA, Heagerty PJ, et al. A randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med. 2009;361(6):569–79. https://doi.org/10.1056/NEJMoa0900563.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Buchbinder R, Osborne RH, Ebeling PR, et al. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med. 2009;361(6):557–68. https://doi.org/10.1056/NEJMoa0900429.

    Article  CAS  PubMed  Google Scholar 

  5. Luetmer MT, Kallmes DF. Have referral patterns for vertebroplasty changed since publication of the placebo-controlled trials? AJNR Am J Neuroradiol. 2011;32(4):647–8. https://doi.org/10.3174/ajnr.A2371.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bazzocchi A, Isaac A, Dalili D, et al. Imaging of metabolic bone diseases: the spine view, part I. Semin Musculoskelet Radiol. 2022;26(04):478–90. https://doi.org/10.1055/s-0042-1754340.

    Article  PubMed  Google Scholar 

  7. Aparisi Gómez MP, Isaac A, Dalili D, et al. Imaging of metabolic bone diseases: the spine view, part II. Semin Musculoskelet Radiol. 2022;26(04):491–500. https://doi.org/10.1055/s-0042-1754341.

    Article  PubMed  Google Scholar 

  8. Clark W, Bird P, Gonski P, et al. Safety and efficacy of vertebroplasty for acute painful osteoporotic fractures (VAPOUR): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2016;388(10052):1408–16. https://doi.org/10.1016/S0140-6736(16)31341-1.

    Article  PubMed  Google Scholar 

  9. Hinde K, Maingard J, Hirsch JA, Phan K, Asadi H, Chandra RV. Mortality outcomes of vertebral augmentation (Vertebroplasty and/or Balloon Kyphoplasty) for osteoporotic vertebral compression fractures: a systematic review and meta-analysis. Radiology. 2020;295(1):96–103. https://doi.org/10.1148/radiol.2020191294.

    Article  PubMed  Google Scholar 

  10. Cazzato RL, Bellone T, Scardapane M, et al. Vertebral augmentation reduces the 12-month mortality and morbidity in patients with osteoporotic vertebral compression fractures. Eur Radiol. 2021;31(11):8246–55. https://doi.org/10.1007/s00330-021-07985-9.

    Article  PubMed  Google Scholar 

  11. Behrman SW, Fabian TC, Kudsk KA, Taylor JC. Improved outcome with femur fractures: early vs. delayed fixation. J Trauma: Injury Infect Critical Care. 1990;30(7):792–8. https://doi.org/10.1097/00005373-199007000-00005.

    Article  CAS  Google Scholar 

  12. Zeng X, Zhang N, Zeng D, et al. Proximal femoral nail antirotation versus dynamic hip screw fixation for treatment of osteoporotic type 31–A1 intertrochanteric femoral fractures in elderly patients. J Int Med Res. 2017;45(3):1109–23. https://doi.org/10.1177/0300060517703277.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ong KL, Beall DP, Frohbergh M, Lau E, Hirsch JA. Were VCF patients at higher risk of mortality following the 2009 publication of the vertebroplasty “sham” trials? Osteoporos Int. 2018;29(2):375–83. https://doi.org/10.1007/s00198-017-4281-z.

    Article  CAS  PubMed  Google Scholar 

  14. Edidin AA, Ong KL, Lau E, Kurtz SM. Mortality risk for operated and nonoperated vertebral fracture patients in the medicare population. J Bone Miner Res. 2011;26(7):1617–26. https://doi.org/10.1002/jbmr.353.

    Article  PubMed  Google Scholar 

  15. Tsoumakidou G, Too CW, Koch G, et al. CIRSE guidelines on percutaneous vertebral augmentation. Cardiovasc Intervent Radiol. 2017;40(3):331–42. https://doi.org/10.1007/s00270-017-1574-8.

    Article  PubMed  Google Scholar 

  16. Garnon J, Doré B, Auloge P, et al. Efficacy of the vertebral body stenting system for the restoration of vertebral height in acute traumatic compression fractures in a non-osteoporotic population. Cardiovasc Intervent Radiol. 2019;42(11):1579–87. https://doi.org/10.1007/s00270-019-02265-y.

    Article  PubMed  Google Scholar 

  17. Dalili D, Isaac A, Cazzato RL, et al. Interventional techniques for bone and musculoskeletal soft tissue tumors: current practices and future directions: part II. Stabilization. Semin Musculoskelet Radiol. 2020;24(06):710–25. https://doi.org/10.1055/s-0040-1719104.

    Article  PubMed  Google Scholar 

  18. Wang H, Wu G, Chen C yong, Qiu Y yu, Xie Y. Percutaneous screw fixation assisted by hollow pedicle finder for superior pubic ramus fractures. BMC Surg. 2022;22(1):216. doi:https://doi.org/10.1186/s12893-022-01659-z

  19. Behanova M, Haschka J, Reichardt B, et al. Pelvic fractures: an underestimated problem? Incidence and mortality risk after pelvic fracture in Austria, 2010–2018. JCM. 2022;11(10):2834. https://doi.org/10.3390/jcm11102834.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Denis F, Davis S, Comfort T. Sacral fractures: an important problem. Retrospective analysis of 236 cases. Clin Orthop Relat Res. 1988;227:67–81.

  21. Marengo L, Nasto LA, Michelis MB, Boero S. Elastic stable intramedullary nailing (ESIN) in paediatric femur and tibia shaft fractures: comparison between titanium and stainless steel nails. Injury. 2018;49:S8–11. https://doi.org/10.1016/j.injury.2018.09.049.

    Article  PubMed  Google Scholar 

  22. Jairam V, Lee V, Yu JB, Park HS. Nationwide patterns of pathologic fractures among patients hospitalized with bone metastases. Am J Clin Oncol. 2020;43(10):720–6. https://doi.org/10.1097/COC.0000000000000737.

    Article  CAS  PubMed  Google Scholar 

  23. Saad F, Lipton A, Cook R, Chen YM, Smith M, Coleman R. Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer. 2007;110(8):1860–7. https://doi.org/10.1002/cncr.22991.

    Article  PubMed  Google Scholar 

  24. Bindels BJJ, Thio QCBS, Raskin KA, Ferrone ML, Lozano Calderón SA, Schwab JH. Thirty-day postoperative complications after surgery for metastatic long bone disease are associated with higher mortality at 1 year. Clin Orthop Relat Res. 2020;478(2):306–18. https://doi.org/10.1097/CORR.0000000000001036.

    Article  PubMed  Google Scholar 

  25. Elsamadicy AA, Adogwa O, Lubkin DT, et al. Thirty-day complication and readmission rates associated with resection of metastatic spinal tumors: a single institutional experience. J Spine Surg. 2018;4(2):304–10. https://doi.org/10.21037/jss.2018.05.14.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Autrusseau PA, Schneegans O, Koch G, et al. Safety and efficacy of percutaneous cryoablation of extraspinal thyroid cancer bone metastases with curative intent: single-center experience with a median follow-up of more than 5 years. J Vasc Interv Radiol. 2022;33(7):797–804. https://doi.org/10.1016/j.jvir.2022.03.016.

    Article  PubMed  Google Scholar 

  27. Gardner CS, Ensor JE, Ahrar K, et al. Cryoablation of bone metastases from renal cell carcinoma for local tumor control. J Bone Joint Surg. 2017;99(22):1916–26. https://doi.org/10.2106/JBJS.16.01182.

    Article  PubMed  Google Scholar 

  28. Cazzato RL, Jennings JW, Autrusseau PA, et al. Percutaneous image-guided cryoablation of spinal metastases: over 10-year experience in two academic centers. Eur Radiol. 2022;32(6):4137–46. https://doi.org/10.1007/s00330-021-08477-6.

    Article  PubMed  Google Scholar 

  29. Luigi Cazzato R, Auloge P, De Marini P, et al. Percutaneous image-guided ablation of bone metastases: local tumor control in oligometastatic patients. Int J Hyperth. 2018;35(1):493–9. https://doi.org/10.1080/02656736.2018.1508760.

    Article  Google Scholar 

  30. Cazzato RL, Buy X, Grasso RF, et al. Interventional Radiologist’s perspective on the management of bone metastatic disease. Eur J Surg Oncol. 2015;41(8):967–74. https://doi.org/10.1016/j.ejso.2015.05.010.

    Article  CAS  PubMed  Google Scholar 

  31. Cazzato RL, Koch G, Buy X, et al. Percutaneous image-guided screw fixation of bone lesions in cancer patients: double-centre analysis of outcomes including local evolution of the treated focus. Cardiovasc Intervent Radiol. 2016;39(10):1455–63. https://doi.org/10.1007/s00270-016-1389-z.

    Article  PubMed  Google Scholar 

  32. Borggrefe J, Giravent S, Campbell G, et al. Association of osteolytic lesions, bone mineral loss and trabecular sclerosis with prevalent vertebral fractures in patients with multiple myeloma. Eur J Radiol. 2015;84(11):2269–74. https://doi.org/10.1016/j.ejrad.2015.07.024.

    Article  CAS  PubMed  Google Scholar 

  33. Bailey S, Stadelmann MA, Zysset PK, Vashishth D, Alkalay RN. Influence of metastatic bone lesion type and tumor origin on human vertebral bone architecture, matrix quality, and mechanical properties. J Bone Mineral Res. 2022;37(5):896–907. https://doi.org/10.1002/jbmr.4539.

    Article  CAS  Google Scholar 

  34. Saliou G, Kocheida EM, Lehmann P, et al. Percutaneous vertebroplasty for pain management in malignant fractures of the spine with epidural involvement. Radiology. 2010;254(3):882–90. https://doi.org/10.1148/radiol.09081698.

    Article  PubMed  Google Scholar 

  35. Fisher CG, DiPaola CP, Ryken TC, et al. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the spine oncology study group. Spine. 2010;35(22):E1221–9. https://doi.org/10.1097/BRS.0b013e3181e16ae2.

    Article  PubMed  Google Scholar 

  36. Mattie R, Brar N, Tram JT, et al. Vertebral augmentation of cancer-related spinal compression fractures: a systematic review and meta-analysis. Spine. 2021;46(24):1729–37. https://doi.org/10.1097/BRS.0000000000004093.

    Article  PubMed  Google Scholar 

  37. Delpla A, Tselikas L, De Baere T, et al. Preventive vertebroplasty for long-term consolidation of vertebral metastases. Cardiovasc Intervent Radiol. 2019;42(12):1726–37. https://doi.org/10.1007/s00270-019-02314-6.

    Article  PubMed  Google Scholar 

  38. Liu Z, Liang H, Sun W, Lu Z, Pan S. Risk factors for local bone destruction progression in palliative percutaneous vertebroplasty for vertebral metastases and the significance of bone cement filling rates. Pain Phys. 2021;24(1):E101–9.

    Google Scholar 

  39. Gangi A, Tsoumakidou G, Buy X, Quoix E. Quality improvement guidelines for bone tumour management. Cardiovasc Intervent Radiol. 2010;33(4):706–13. https://doi.org/10.1007/s00270-009-9738-9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Garnon J, Meylheuc L, Jennings J, et al. PMMA bone cement in interventional oncology. Crit Rev Biomed Eng. 2021;49(1):35–50. https://doi.org/10.1615/CritRevBiomedEng.2021037591.

    Article  PubMed  Google Scholar 

  41. Mohme M, Riethdorf S, Dreimann M, et al. Circulating tumour cell release after cement augmentation of vertebral metastases. Sci Rep. 2017;7(1):7196. https://doi.org/10.1038/s41598-017-07649-z.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Ragheb A, Vanood A, Fahim DK. The addition of radiofrequency tumor ablation to Kyphoplasty may reduce the rate of local recurrence in spinal metastases secondary to breast cancer. World Neurosurg. 2022;161:e500–7. https://doi.org/10.1016/j.wneu.2022.02.052.

    Article  PubMed  Google Scholar 

  43. Greenwood TJ, Wallace A, Friedman MV, Hillen TJ, Robinson CG, Jennings JW. Combined ablation and radiation therapy of spinal metastases: a novel multimodality treatment approach. Pain Phys. 2015;18(6):573–81.

    Article  Google Scholar 

  44. Barat M, Tselikas L, de Baère T, et al. Thermal-ablation of vertebral metastases prevents adverse events in patients with differentiated thyroid carcinoma. Eur J Radiol. 2019;119:108650. https://doi.org/10.1016/j.ejrad.2019.108650.

    Article  CAS  PubMed  Google Scholar 

  45. Andresen R, Radmer S, Andresen JR, Wollny M, Nissen U, Schober HC. Clinical improvement and cost-effectiveness of CT-guided radiofrequency sacroplasty (RFS) and cement sacroplasty (CSP): a prospective randomised comparison of methods: cement augmentation in insufficiency fractures of the sacral bone. Z Orthop Unfall. 2019;157(05):524–33. https://doi.org/10.1055/a-0815-5073.

    Article  PubMed  Google Scholar 

  46. Dalili D, Isaac A, Bazzocchi A, et al. Interventional techniques for bone and musculoskeletal soft tissue tumors: current practices and future directions—part I. Ablation. Semin Musculoskelet Radiol. 2020;24(06):692–709. https://doi.org/10.1055/s-0040-1719103.

    Article  PubMed  Google Scholar 

  47. Cotten A, Chastanet P, Boutry N. Percutaneous acetabular osteoplasty. Semin Musculoskelet Radiol. 1997;1(02):297–300. https://doi.org/10.1055/s-2008-1080151.

    Article  PubMed  Google Scholar 

  48. Morris MT, Alder KD, Moushey A, et al. Biomechanical restoration of metastatic cancer-induced peri-acetabular bone defects by ablation-osteoplasty-reinforcement-internal fixation technique (AORIF): To screw or not to screw? Clin Biomech. 2022;92:105565. https://doi.org/10.1016/j.clinbiomech.2021.105565.

    Article  Google Scholar 

  49. Hesler MC, Buy X, Catena V, et al. Assessment of risk factors for occurrence or worsening of acetabular fracture following percutaneous cementoplasty of acetabulum malignancies. Eur J Radiol. 2019;120:108694. https://doi.org/10.1016/j.ejrad.2019.108694.

    Article  PubMed  Google Scholar 

  50. Dalstra M, Huiskes R. Load transfer across the pelvic bone. J Biomech. 1995;28(6):715–24. https://doi.org/10.1016/0021-9290(94)00125-n.

    Article  CAS  PubMed  Google Scholar 

  51. Mirels H. Metastatic disease in long bones: a proposed scoring system for diagnosing impending pathologic fractures. Clin Orthop Relat Res. 1989;(249):256–64.

  52. Cazzato RL, Garnon J, Tsoumakidou G, et al. Percutaneous image-guided screws meditated osteosynthesis of impeding and pathological/insufficiency fractures of the femoral neck in non-surgical cancer patients. Eur J Radiol. 2017;90:1–5. https://doi.org/10.1016/j.ejrad.2017.02.022.

    Article  PubMed  Google Scholar 

  53. Dassa M, Roux C, Tselikas L, et al. Image-guided percutaneous fixation with internal cemented screws of impending femoral neck pathologic fractures in patients with metastatic cancer: safety, efficacy, and durability. Radiology. 2020;297(3):721–9. https://doi.org/10.1148/radiol.2020201341.

    Article  PubMed  Google Scholar 

  54. Cazzato RL, Koch G, Garnon J, et al. Biomechanical effects of osteoplasty with or without Kirschner wire augmentation on long bone diaphyses undergoing bending stress: implications for percutaneous imaging-guided consolidation in cancer patients. Eur Radiol Exp. 2019;3(1):4. https://doi.org/10.1186/s41747-018-0082-1.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Cazzato RL, Garnon J, Dalili D, et al. Percutaneous osteoplasty in long bones: current status and assessment of outcomes. Tech Vasc Interv Radiol. 2022;25(1):100803. https://doi.org/10.1016/j.tvir.2022.100803.

    Article  PubMed  Google Scholar 

  56. Cappellari A, Trovarelli G, Crimì A, et al. New concepts in the surgical treatment of actual and impending pathological fractures in metastatic disease. Injury. Published online November 2020:S0020138320309529. doi:https://doi.org/10.1016/j.injury.2020.11.025

  57. Camnasio F, Scotti C, Peretti GM, Fontana F, Fraschini G. Prosthetic joint replacement for long bone metastases: analysis of 154 cases. Arch Orthop Trauma Surg. 2008;128(8):787–93. https://doi.org/10.1007/s00402-007-0464-y.

    Article  CAS  PubMed  Google Scholar 

  58. Kim JH, Kang HG, Kim JR, Lin PP, Kim HS. Minimally invasive surgery of humeral metastasis using flexible nails and cement in high-risk patients with advanced cancer. Surg Oncol. 2011;20(1):e32–7. https://doi.org/10.1016/j.suronc.2010.09.001.

    Article  PubMed  Google Scholar 

  59. Kim Y, Kang HG, Kim TS, Kim S, Kim JH, Kim HS. Palliative percutaneous stabilization of lower extremity for bone metastasis using flexible nails and bone cement. Surg Oncol. 2014;23(4):192–8. https://doi.org/10.1016/j.suronc.2014.03.006.

    Article  PubMed  Google Scholar 

  60. Sutcliffe P, Connock M, Shyangdan D, Court R, Kandala NB, Clarke A. A systematic review of evidence on malignant spinal metastases: natural history and technologies for identifying patients at high risk of vertebral fracture and spinal cord compression. Health Technol Assess. 2013;17(42):1–274. https://doi.org/10.3310/hta17420.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Xiong GX, Fisher MWA, Schwab JH, et al. A natural history of patients treated operatively and nonoperatively for spinal metastases over 2 years following treatment: survival and functional outcomes. Spine (Phila Pa 1976). 2022;47(7):515–22. doi:https://doi.org/10.1097/BRS.0000000000004322

  62. Van den Brande R, Mj Cornips E, Peeters M, Ost P, Billiet C, Van de Kelft E. Epidemiology of spinal metastases, metastatic epidural spinal cord compression and pathologic vertebral compression fractures in patients with solid tumors: a systematic review. J Bone Oncol. 2022;35:100446. https://doi.org/10.1016/j.jbo.2022.100446.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Onggo JR, Maingard JT, Nambiar M, Buckland A, Chandra RV, Hirsch JA. Role of vertebroplasty and balloon kyphoplasty in pathological fracture in myeloma: a narrative review. Eur Spine J. 2021;30(10):2825–38. https://doi.org/10.1007/s00586-021-06955-5.

    Article  PubMed  Google Scholar 

  64. Roux C, Tselikas L, Yevich S, et al. Fluoroscopy and cone-beam CT–guided fixation by internal cemented screw for pathologic pelvic fractures. Radiology. 2019;290(2):418–25. https://doi.org/10.1148/radiol.2018181105.

    Article  PubMed  Google Scholar 

  65. Cirstoiu C, Cretu B, Iordache S, Popa M, Serban B, Cursaru A. Surgical management options for long-bone metastasis. EFORT Open Rev. 2022;7(3):206–13. https://doi.org/10.1530/EOR-21-0119.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Funding

This study was not supported by any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Luigi Cazzato.

Ethics declarations

Conflict of interest

Authors have no conflicts of interest to disclose.

Consent for Publication

For this type of study, consent for publication is not required.

Ethical Approval

For this type of study, formal consent is not required.

Informed Consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cazzato, R.L., Dalili, D., De Marini, P. et al. Bone Consolidation: A Practical Guide for the Interventional Radiologist. Cardiovasc Intervent Radiol 46, 1458–1468 (2023). https://doi.org/10.1007/s00270-022-03340-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-022-03340-7

Keywords

Navigation