Skip to main content
Log in

Radiation Exposure of Abdominal Cone Beam Computed Tomography

  • Clinical Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate patients radiation exposure of abdominal C-arm cone beam computed tomography (CBCT).

Methods

This prospective study was approved by the institutional review board; written, informed consent was waived. Radiation exposure of abdominal CBCT was evaluated in 40 patients who underwent CBCT during endovascular interventions. Dose area product (DAP) of CBCT was documented and effective dose (ED) was estimated based on organ doses using dedicated Monte Carlo simulation software with consideration of X-ray field location and patients’ individual body weight and height. Weight-dependent ED per DAP conversion factors were calculated. CBCT radiation dose was compared to radiation dose of procedural fluoroscopy. CBCT dose-related risk for cancer was assessed.

Results

Mean ED of abdominal CBCT was 4.3 mSv (95 % confidence interval [CI] 3.9; 4.8 mSv, range 1.1–7.4 mSv). ED was significantly higher in the upper than in the lower abdomen (p = 0.003) and increased with patients’ weight (r = 0.55, slope = 0.045 mSv/kg, p < 0.001). Radiation exposure of CBCT corresponded to the radiation exposure of on average 7.2 fluoroscopy minutes (95 % CI 5.5; 8.8 min) in the same region of interest. Lifetime risk of exposure related cancer death was 0.033 % or less depending on age and weight.

Conclusions

Mean ED of abdominal CBCT was 4.3 mSv depending on X-ray field location and body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wallace MJ, Kuo MD, Glaiberman C, Binkert CA, Orth RC, Soulez G (2008) Three-dimensional C-arm cone-beam CT: applications in the interventional suite. J Vasc Interv Radiol 19(6):799–813

    Article  PubMed  Google Scholar 

  2. Krücker J, Xu S, Venkatesan A, Locklin JK, Amalou H, Glossop N, Wood BJ (2011) Clinical utility of real-time fusion guidance for biopsy and ablation. J Vasc Interv Radiol 22(4):515–524

    Article  PubMed Central  PubMed  Google Scholar 

  3. Braak SJ, van Strijen MJ, van Leersum M, van Es HW, van Heesewijk JP (2010) Real-time 3D fluoroscopy guidance during needle interventions: technique, accuracy, and feasibility. AJR Am J Roentgenol 194(5):W445–W451

    Article  CAS  PubMed  Google Scholar 

  4. Meyer BC, Brost A, Kraitchman DL, Gilson WD, Strobel N, Hornegger J, Lewin JS, Wacker FK (2013) Percutaneous punctures with MR imaging guidance: comparison between MR imaging-enhanced fluoroscopic guidance and real-time MR Imaging guidance. Radiology 266(3):912–919

    Article  PubMed  Google Scholar 

  5. Sailer AM, de Haan MW, Peppelenbosch AG, Jacobs MJ, Wildberger JE, Schurink GW (2014) CTA with fluoroscopy image fusion guidance in endovascular complex aortic aneurysm repair. Eur J Vasc Endovasc Surg. doi:10.1016/j.ejvs.2013.12.022.Epub

    Google Scholar 

  6. Dijkstra ML, Eagleton MJ, Greenberg RK, Mastracci T, Hernandez A (2011) Intraoperative C-arm cone-beam computed tomography in fenestrated/branched aortic endografting. J Vasc Surg 53(3):583–590

    Article  PubMed  Google Scholar 

  7. Kobeiter H, Nahum J, Becquemin JP (2011) Zero-contrast thoracic endovascular aortic repair using image fusion. Circulation 124(11):e280–e282

    Article  PubMed  Google Scholar 

  8. Deschamps F, Solomon SB, Thornton RH, Rao P, Hakime A, Kuoch V, de Baere T (2010) Computed analysis of three-dimensional cone-beam computed tomography angiography for determination of tumor-feeding vessels during chemoembolization of liver tumor: a pilot study. Cardiovasc Interv Radiol. doi:10.1007/s00270-010-9846-6

    Google Scholar 

  9. Tam A, Mohamed A, Pfister M, Rohm E, Wallace MJ (2009) C-arm cone beam computed tomographic needle path overlay for fluoroscopic-guided placement of translumbar central venous catheters. Cardiovasc Interv Radiol 32(4):820–824

    Article  Google Scholar 

  10. Benndorf G, Strother CM, Claus B, Naeini R, Morsi H, Klucznik R, Mawad ME (2005) Angiographic CT in cerebrovascular stenting. AJNR Am J Neuroradiol 26(7):1813–1818

    PubMed  Google Scholar 

  11. Möhlenbruch M, Nelles M, Thomas D, Willinek W, Gerstner A, Schild HH, Wilhelm K (2010) Cone-beam computed tomography-guided percutaneous radiologic gastrostomy. Cardiovasc Interv Radiol 33(2):315–320

    Article  Google Scholar 

  12. Aadland TD, Thielen KR, Kaufmann TJ, Morris JM, Lanzino G, Kallmes DF, Schueler BA, Cloft H (2010) 3D C-arm cone-beam CT angiography as an adjunct in the precise anatomic characterization of spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 31(3):476–480

    Article  CAS  PubMed  Google Scholar 

  13. Schafer S, Nithiananthan S, Mirota DJ, Uneri A, Stayman JW, Zbijewski W, Schmidgunst C, Kleinszig G, Khanna AJ, Siewerdsena JH (2011) Mobile C-arm cone-beam CT for guidance of spine surgery: image quality, radiation dose, and integration with interventional guidance. Med Phys 38(8):4563–4574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Valentin J (2007) The 2007 recommendations of the International Commission on Radiological Protection, Annals of the ICRP publication 103. Elsevier Science, Oxford

    Google Scholar 

  15. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation NRC (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. National Academic Press, Washington DC

    Google Scholar 

  16. Rijksinstituut voor Volksgezondheid en Milieu, Ministerie van Volksgezondheid, Welzijn en Sport (2013) Stralingsbelasting in Nederland/Aandeel per stralingsbron. http://www.rivm.nl/Onderwerpen/S/Stralingsbelasting_in_Nederland/Aandeel_per_stralingsbron. Accessed 09 Jan 2014

  17. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248(1):254–263

    Article  PubMed  Google Scholar 

  18. van der Molen AJ, Schilham A, Stoop P, Prokop M, Geleijns J (2013) A national survey on radiation dose in CT in The Netherlands. Insights Imaging 4(3):383–390

    Article  PubMed Central  PubMed  Google Scholar 

  19. Li J, Udayasankar UK, Toth TL, Seamans J, Small WC, Kalra MK (2007) Automatic patient centering for MDCT: effect on radiation dose. AJR Am J Roentgenol 188(2):547–552

    Article  PubMed  Google Scholar 

  20. Tyan YS, Li YY, Ku MC, Huang HH, Chen TR (2013) The effective dose assessment of C-arm CT in hepatic arterial embolisation therapy. Br J Radiol 86(1024):20120551

    Article  PubMed Central  PubMed  Google Scholar 

  21. Suzuki S, Yamaguchi I, Kidouchi T, Yamamoto A, Masumoto T, Ozaki Y (2011) Evaluation of effective dose during abdominal three-dimensional imaging for three flat-panel-detector angiography systems. Cardiovasc Interv Radiol 34(2):376–382

    Article  Google Scholar 

  22. Bai M, Liu B, Mu H, Liu X, Jiang Y (2012) The comparison of radiation dose between C-arm flat-detector CT (DynaCT) and multi-slice CT (MSCT): a phantom study. Eur J Radiol 81(11):3577–3580

    Article  PubMed  Google Scholar 

  23. Kwok YM, Irani FG, Tay KH, Yang CC, Padre CG (2013) Tan BS (2013) Effective dose estimates for cone beam computed tomography in interventional radiology. Eur Radiol 23(11):3197–3204. doi:10.1007/s00330-013-2934-7.Epub

    Article  CAS  PubMed  Google Scholar 

  24. Braak SJ, van Strijen MJL, van Es HW, Nievelstein RAJ, van Heesewijk JPM (2011) Effective dose during needle interventions: Cone-Beam CT guidance compared with conventional CT guidance. J Vasc Interv Radiol 22:455–461

    Article  PubMed  Google Scholar 

  25. Eide KR, Ødegård A, Myhre HO, Lydersen S, Hatlinghus S, Haraldseth O (2009) DynaCT during EVAR–a comparison with multidetector CT. Eur J Vasc Endovasc Surg 37(1):23–30

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Anna M. Sailer, Geert Willem H. Schurink, Joachim E. Wildberger, Rick de Graaf, Willem H. van Zwam, Michiel W. de Haan, Gerrit J. Kemerink and Cécile R. L. P. N. Jeukens have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Sailer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sailer, A.M., Schurink, G.W.H., Wildberger, J.E. et al. Radiation Exposure of Abdominal Cone Beam Computed Tomography. Cardiovasc Intervent Radiol 38, 112–120 (2015). https://doi.org/10.1007/s00270-014-0900-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-014-0900-7

Keywords

Navigation