Skip to main content
Log in

High-temperature crystal chemistry of layered calcium borosilicates: CaBSiO4(OH) (datolite), Ca4B5Si3O15(OH)5 (‘bakerite’) and Ca2B2SiO7 (synthetic analogue of okayamalite)

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The high-temperature behaviour of three Ca borosilicates has been studied by in situ powder high-temperature X-ray diffraction (HTXRD), differential scanning calorimetry and thermogravimetry in the temperature range 30–900 °C for natural samples of datolite, CaBSiO4(OH), and ‘bakerite’, Ca4B5Si3O15(OH)5, and a synthetic analogue of okayamalite, Ca2B2SiO7. The latter was obtained by heating datolite at 800 °C for 5 h. Datolite and bakerite start to dehydroxylate above 700 and 500 °C, respectively, and decompose fully to form a high-temperature modification of okayamalite, HT-Ca2B2SiO7, and wollastonite, CaSiO3 at about 730 °С. Above 900 °C, HT-okayamalite decomposes with the formation of wollastonite, CaSiO3, and metaborate CaB2O4. The latter melts at about 990 °C. Above 1000 °C, only the existence of wollastonite, CaSiO3 and cristobalite, SiO2 was observed. According to the HTXRD data, in the temperature range 30–500 °C, datolite and ‘bakerite’ demonstrate very similar and relatively low volumetric thermal expansion: α v  = 29 and 27 × 10−6 °C−1, respectively. A high thermal expansion anisotropy (α max/α min ~ 3) is caused by both the layered character of the crystal structures and the shear deformations of their monoclinic unit cells. The direction of maximum expansion is intermediate between the normal direction to the layers and the (a + c) vector. A possible transformation mechanism from the datolite to the okayamalite structure topology is proposed from geometrical considerations. The synthetic analogue of okayamalite, Ca2B2SiO7, undergoes a reversible polymorphic transition at about 550 °C with a decrease in symmetry from tetragonal to orthorhombic. The crystal structure of the high-temperature (HT) modification of okayamalite was solved from the powder-diffraction data [900 °C: P21212, a = 7.3361(4), b = 7.1987(4), c = 4.8619(4) Å, V = 256.76(3) Å3, R wp = 6.61, R Bragg = 2.68%].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bačík P, Fridrichová J, Uher P, Pršek J, Ondrejka M (2014) The crystal chemistry of gadolinite-datolite group silicates. Can Mineral 52:625–642

    Article  Google Scholar 

  • Bačík P, Miyawaki R, Atencio D, Cámara F, Fridrichová J (2017) Nomenclature of the gadolinite supergroup. Eur J Mineral 29 (in press)

  • Blatov VA, Shevchenko AP, Proserpio DM (2014) Applied topological analysis of crystal structures with the program package Topospro. Cryst Growth Des 14:3576–3586

    Article  Google Scholar 

  • Bruker AXS (2009) Topas 4.2. General profile and structure analysis software for powder diffraction data. Karlsruhe, Germany

    Google Scholar 

  • Bubnova RS, Filatov SK (2008a) Vysokotemperaturnaya Kristallokhimiya Boratov i Borosilikatov (High temperature crystal chemistry borates and borosilicates). Nauka, St. Petersburg (Russian)

    Google Scholar 

  • Bubnova RS, Filatov SK (2008b) Strong anisotropic thermal expansion in borates. Phys Stat Sol 245:2469–2476

    Article  Google Scholar 

  • Bubnova RS, Firsova VA, Filatov SK (2013) Software for determining the thermal expansion tensor and the graphic representation of its characteristic surface (Theta to Tensor—TTT). Glass Phys Chem 39:347–350

    Article  Google Scholar 

  • Bubnova RS, Volkov SN, Yukhno VA, Krzhizhanovskaya MG (2016) Crystal structure of new polymorphic modification β-Ca3B2SiO8, β-α phase transition and thermal expansion of α- and β-modifications. Glass Phys Chem 42:349–358

    Article  Google Scholar 

  • Filatov SK (1971) Anomale Warmeausdehnung von V2O5. Kristall Technik 6:777–785

    Article  Google Scholar 

  • Filatov SK (1990) Vysokotemperaturnaya Kristallokhimiya (High temperature crystal chemistry). Nedra, Leningrad (Russian)

    Google Scholar 

  • Filatov SK (2011) General concept of increasing crystal symmetry with an increase in temperature. Crystallogr Rep 56:953–961

    Article  Google Scholar 

  • Giuli G, Bindi L, Bonazzi P (2000) Rietveld refinement of okayamalite, Ca2SiB2O7: structural evidence for the B/Si ordered distribution. Am Mineral 85:1512–1515

    Article  Google Scholar 

  • Gorelova LA, Filatov SK, Krzhizhanovskaya MG, Bubnova RS (2015) High-temperature behavior of danburite-like-borosilicates MB2Si2O6 (M = Ca, Sr, Ba). Phys Chem Glasses 56:189–196

    Google Scholar 

  • Griffen DT (1988) Howlite, Ca2Si2B5O9(OH)5: structure refinement and hydrogen bonding. Am Mineral 73:1138–1144

    Google Scholar 

  • Hagiya K, Kusaka K, Ohmasa M, Iishi K (2001) Commensurate structure of Ca2CoSi2O7, a new twinned orthorhombic structure. Acta Crystallogr B 57:271–277

    Article  Google Scholar 

  • Hålenius U, Hatert F, Pasero M, Mills J (2016) New minerals and nomenclature modifications approved in 2016. CNMNC Newsletter No 33. Mineral Mag 80:1135–1144

    Article  Google Scholar 

  • Ito T, Mori H (1953) The crystal structure of datolite. Acta Crystallogr 6:24–32

    Article  Google Scholar 

  • Ivanov YV, Belokoneva EL (2007) Multipole refinement and the electron density analysis in natural borosilicate datolite using X-ray diffraction data. Acta Crystallogr B63:49–55

    Article  Google Scholar 

  • Jia ZH, Schaper AK, Massa W, Treutmann W, Rager H (2006) Structure and phase transitions in Ca2CoSi2O7–Ca2ZnSi2O7 solid-solution crystals. Acta Crystallogr B62:547–555

    Article  Google Scholar 

  • Inorganic Crystal Structure Database (ICSD) (2016). Karlsruhe, Germany

  • Kimata M (1978) Boron behavior in the thermal decomposition of datolite. Neues Jahrb Miner Monat 58–70

  • Krivovichev SV (2012) Topological complexity of crystal structures: quantitative approach. Acta Crystallogr A68:393–398

    Article  Google Scholar 

  • Krivovichev SV (2013) Structural complexity of minerals: information storage and processing in the mineral world. Mineral Mag 77:275–326

    Article  Google Scholar 

  • Krivovichev SV (2014) Which inorganic structures are the most complex? Angew Chem Int Ed 53:654–661

    Article  Google Scholar 

  • Krivovichev SV (2016) Structural complexity and configurational entropy of crystals. Acta Crystallogr B72:274–276

    Google Scholar 

  • Landau LD, Lifshitz EM (1980) Statistical physics. Part 1. Pergamon Press, Oxford, p 449

    Google Scholar 

  • Matsubara S, Miyawaki R, Kato A, Yokoyama K, Okamoto A (1998) Okayamalite, Ca2B2SiO7, a new mineral, boron analogue of gehlenite. Mineral Mag 62:703–706

    Article  Google Scholar 

  • Merlini M, Gemmi M, Cruciani G, Artioli G (2008) High-temperature behavior of melilite: in situ X-ray diffraction study of gehlenite–akermanite-Na melilite solid solution. Phys Chem Miner 35:147–155

    Article  Google Scholar 

  • Olmi F, Viti C, Bindi L, Bonazzi P, Menchetti S (2000) Second occurrence of okayamalite, Ca2SiB2O7: chemical and TEM characterization. Am Mineral 85:1508–1511

    Article  Google Scholar 

  • Pavlov PV, Belov NV (1959) The structure of herderite, datolite, and gadolinite determined by direct methods. Sov Phys Crystallogr 4:300–314

    Google Scholar 

  • Perchiazzi N, Gualtieri AF, Merlino S, Kampf AR (2004) The atomic structure of bakerite and its relationship to datolite. Am Mineral 89:767–776

    Article  Google Scholar 

  • Peters L, Knorr K, Knapp M, Depmeier W (2005) Thermal expansion of gehlenite, Ca2Al[AlSiO7], and the related aluminates LnCaAl[Al2O7] with Ln = Tb, Sm. Phys Chem Minerals 32:546–551

    Article  Google Scholar 

  • Peters L, Knorr K, Katzke H, Knapp M, Depmeier W (2006) The transformation mechanism of the sodalite- to the melilite-topology: thermal expansion and decomposition of bicchulite-type to melilite-type compounds. Z Kristallogr 221:198–205

    Google Scholar 

  • Petříček V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229:345–352

    Google Scholar 

  • Rinaldi R, Gatta GD, Angel RJ (2010) Crystal chemistry and low-temperature behavior of datolite: a single crystal X-ray diffraction study. Am Mineral 95:1413–1421

    Article  Google Scholar 

  • Sugiyama K, Takéuchi Y (1985) Unusual thermal expansion of a B–O bond in the structure of danburite CaB2Si2O8. Z Kristallogr 173:293–304

    Article  Google Scholar 

  • Tarney J, Nicol AW, Marriner GF (1973) The thermal transformation of datolite, CaBSiO4(OH), to boron-melilite. Mineral Mag 39:158–175

    Article  Google Scholar 

  • Veron E, Garaga MN, Pelloquin D, Cadars S, Suchomel M, Suard E, Massiot D, Montoillout V, Matzen G, Allix M (2013) Synthesis and structure determination of CaSi1/3B2/3O8/3: a new calcium borosilicate. Inorg Chem 52:4250–4258

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Russian Foundation for Basic Research (no. 17-03-00887) and the President of Russian Federation grant for leading scientific schools (to SVK; Grant NSh-10005.2016.5). We are grateful to O.G. Bubnova and T. L. Panikorovsky for performing the thermal analysis, V. V. Shilovskih for performing the chemical analysis and S. N. Volkov for substantial help with the JANA2006 software. The XRD, TG and DSC studies have been carried out at the X-ray Diffraction Center and the chemical analysis has been performed at the Geomodel Center of St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria G. Krzhizhanovskaya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 KB)

Supplementary material 2 (CIF 1 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krzhizhanovskaya, M.G., Gorelova, L.A., Bubnova, R.S. et al. High-temperature crystal chemistry of layered calcium borosilicates: CaBSiO4(OH) (datolite), Ca4B5Si3O15(OH)5 (‘bakerite’) and Ca2B2SiO7 (synthetic analogue of okayamalite). Phys Chem Minerals 45, 463–473 (2018). https://doi.org/10.1007/s00269-017-0933-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0933-y

Keywords

Navigation