Skip to main content
Log in

X-ray diffraction and spectroscopic study of wiluite: implications for the vesuvianite-group nomenclature

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Two wiluite samples from the Wiluy River, Yakutia, Russia have been investigated by means of single-crystal and powder X-ray diffraction, electron microprobe analysis, 1H, 27Al, 11B, and 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR), thermogravimetric analysis (DSC/TGA), X-ray photoelectron spectroscopy (XPS) at the Si2p, Ca2p, Al2p, Mg1s, B1s and Fe2p core levels, 57Fe Mössbauer spectroscopy, infrared (IR) spectroscopy and optical measurements. The crystal structures have been refined in the P4/nnc space group [a = 15.7027(3), c = 11.7008(3) Å, V = 2885.1(1) Å3 for 1 and a = 15.6950(2), c = 11.6787(4) Å, V = 2876.9(1) Å3 for 2] to R 1 = 0.022 and R 1 = 0.021, respectively. In the crystal structure of wiluite, five-coordinated Y1 site is predominantly occupied by Mg. IR spectra of wiluite substantially different from those of vesuvianite, in particular, by the presence of additional bands in the range 1080‒1415 cm−1, which correspond to symmetric B‒O stretching vibrations of the BO 3−3 and BO 5−4 groups. According to the MAS NMR data, tetrahedrally coordinated T1 site is occupied by B3+ with minor amounts of Al3+. The general formula of wiluite can be written as follows (Z = 2): Ca19Mg(Al,Mg,Fe,Ti,Mn)12(B,Al,◻)5(Si2O7)4(SiO4)10(O,OH)9O2–3. The diversity of vesuvianite-group minerals is largely determined by the population of the Y1 sites. However, wiluite is characterized by the presence of additional T1 and T2 sites and should be considered as special among other vesuvianite-group minerals. The reasonability of subdivision of the wiluite subgroup within the vesuvianite group is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agilent Technologies (2014) CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton

  • Aksenov SM, Chukanov NV, Rusakov VS, Panikorovskii TL, Gainov RR, Vagizov FG, Rastsvetaeva RK, Lyssenko KA, Belakovskiy DI (2016) Towards a revisitation of vesuvianite-group nomenclature: the crystal structure of Ti-rich vesuvianite from Alchuri, Shigar valley, Pakistan. Acta Crystallogr B 72:744–752

    Article  Google Scholar 

  • Allen FM, Burnham CW (1992) A comprehensive structure-model for vesuvianite: Symmetry variation and crystal growth. Can Mineral 30:1–18

    Google Scholar 

  • Armbruster T, Gnos E (2000) “Rod” polytypism in vesuvianite: crystal structure of a low-temperature P4nc with pronounced octahedral cation ordering. Schweiz Miner Petrog 80:109–116

  • Armbruster T, Gnos E, Dixon R, Gutzmer J, Hejny C, Döbelin N, Medenbach O (2002) Manganvesuvianite and tweddillite, two new Mn3+-silicate minerals from the Kalahari manganese fields, South Africa. Mineral Mag 66:137–150

    Article  Google Scholar 

  • Barr TL, Seal S, Wozniak K, Klinowaki J (1997) ESCA studies of the coordination state of aluminum in oxide environments. J Chem Soc Faraday T 93:181–186

    Article  Google Scholar 

  • Bellatreccia F, Cámara F, Ottolini L, Della Ventura G, Cibin G, Mottana A (2005) Wiluite from Ariccia, Latium, Italy: occurrence and crystal structure. Can Mineral 43:1457–1468

    Article  Google Scholar 

  • Britvin SN, Antonov AA, Krivovichev SV, Armbruster T, Burns PC, Chukanov NV (2003) Fluorvesuvianite, Ca19(Al,Mg,Fe 2+) 13[SiO4]10[Si2O7]4O(F, OH)9, a new mineral species from Pitkäranta, Karelia, Russia: Description and crystal structure. Can Mineral 41:1371–1380

    Article  Google Scholar 

  • Bruker AXS (2009) Topas V4.2: General profile and structure analysis software for powder diffraction data. Karlsruhe, Germany

  • Bubnova RS, Filatov SK (2008) High-temperature crystal chemistry of borates and borosilicates. Saint-Petersburg, Nauka (in Russian)

  • Burns RG (1994) Mineral Mössbauer spectroscopy: Correlations between chemical shift and quadrupole splitting parameters. Hyperfine Interact 91:739–745

  • Coda A, Giusta DA, Isetti G, Mazzi F (1970) On the structure of vesuvianite. Atti Accad Sci Torino 105:1–22.

  • D’espinosa de la Callerie and Fripiat (1994) Reassessment of the 29Si MAS-NMR spectra of sepiolite and aluminated sepiolite. Clay Miner 29:313–318

  • Deer WA, ‎Howie RA, ‎Zussman J. (1982) Rock-Forming Minerals: Orthosilicates, Vol 1 A. Geological Society of London

  • Dyrek K, Platonov AN, Sojka Z, Żabinski W (1992) Optical absorption and EPR study of Cu2+ ions in vesuvianite (“cyprine”) from Sauland, Telemark, Norway. Eur J Mineral 4:1285–1289

    Article  Google Scholar 

  • Elmi C, Brigatti MF, Pasquali L, Montecchi M, Laurora A, Malferrari D, Nannarone S (2010) Crystal chemistry, surface morphology and X-ray photoelectron spectroscopy of Fe-rich osumilite from Mt. Arci, Sardinia (Italy). Phys Chem Miner 37:561–569

  • Elmi C, Brigatti MF, Pasquali L, Montecchi M, Laurora A, Malferrari D, Nannarone S (2011) High-temperature vesuvianite: crystal chemistry and surface considerations. Phys Chem Miner 38: 459–468

  • Galuskin EV (2005) Minerals of Vesuvianite Group from Achtarandite Rocks (Wiluy River, Yakutia). University of Silesia, Katowice (in Polish)

  • Galuskin EV, Galuskina IO (2000a) Wiluite—the new mineral species of 1998 from Sakha–Yakutia, a mineral with more than 200-year-long history. Zap Vser Mineral Obsh 129(1): 130–132 (in Russian)

  • Galuskin EV, Galuskina IO (2000b) Wiluite, Ca19(Al,Mg,Fe,Ti)13(B, Al,◻)5Si18O68(O, OH)10, a new mineral species isostructural with vesuvianite, from the Sakha Republic, Russian Federation. (Discussion). Can Mineral 38:763–764

    Article  Google Scholar 

  • Galuskin EV, Galuskina IO, Sitarz M, Stadnicka K (2003) Si-deficient, OH-substituted, boron-bearing vesuvianite from the Wiluy River, Yakutia, Russia. Can Mineral 41:833–842

    Article  Google Scholar 

  • Galuskin EV, Galuskina IO, Dzierżanowski P (2005) Chlorine in vesuvianites. Mineral Pol 36(1):51–61

  • Galuskin EV, Galuskina IO, Stadnicka K, Armbruster T, Kozanecki M (2007) The crystal structure of Si-deficient, OH-substituted, boron-bearing vesuvianite from the Wiluy River, Sakha-Yakutia, Russia. Can Mineral 45:239–248

    Article  Google Scholar 

  • Galuskina IO, Galuskin EV, Sitarz M (1998) Atoll hydrogarnets and mechanism of the formation of achtarandite pseudomorphs. Neues Jb Miner Monat 2:49–62

  • Geiger CA, Armbruster T, Khomenko V, Quartieri S (2000) Cordierite I: The coordination of Fe2+. Am Mineral 85:1255–1264

    Article  Google Scholar 

  • Giuseppetti G, Mazzi F (1983) The crystal structure of a vesuvianite with P4/n symmetry. Tscher Miner Petrog 31:277–288

  • Gnos E, Armbruster T (2006) Relationship among metamorphic grade, vesuvianite “rod polytypism”, and vesuvianite composition. Am Mineral 91:862–870

    Article  Google Scholar 

  • Groat LA (1988) The crystal chemistry of vesuvianite. PhD thesis. Winnipeg, Manitoba

  • Groat LА, Hawthorne FС, Ercit ТS (1992) The chemistry of vesuvianite. Can Mineral 33:19–48

    Google Scholar 

  • Groat LA, Hawthorne FC, Ercit TS, Putnis A (1993) The symmetry of vesuvianite. Can Mineral 31:617–635

    Google Scholar 

  • Groat LA, Hawthorne FC, Ercit TS (1994a) Excess Y-group cations in the crystal structure of vesuvianite. Can Mineral 32:497–504

    Google Scholar 

  • Groat LA, Hawthorne FC, Ercit TS (1994b) The incorporation of boron into the vesuvianite structure. Can Mineral 32:505–523

    Google Scholar 

  • Groat LA, Hawthorne FC, Rossman GR, Scott TE (1995) The infrared spectroscopy of vesuvianite in the OH region. Can Mineral 33:609–626

    Google Scholar 

  • Groat LA, Hawthorne FC, Lager GA, Schultz AJ, Ercit TS (1996) X–ray and neutron crystal-structure refinements of a boron-bearing vesuvianite. Can Mineral 34:1059–1070

    Google Scholar 

  • Groat LA, Hawthorne FC, Ercit TS, Grice JD (1998) Wiluite, Ca19(Al,Mg,Fe,Ti)13(B, Al,◻)5Si18O68(O, OH)10, a new mineral species isostructural with vesuvianite, from the Sakha Republic, Russian Federation. Can Mineral 36:1301–1304

    Google Scholar 

  • Groat LA, Hawthorne FC, Ercit TS, Grice JD (2000) Wiluite, Ca19(Al,Mg,Fe,Ti)13(B, Al,◻)5Si18O68(O, OH)10, a new mineral species isostructural with vesuvianite, from the Sakha Republic, Russian Federation. (Discussion). Can Mineral 38:765–766

    Article  Google Scholar 

  • Groat LA, Evans RJ, Cempírek J, McCammon C, Houzar S (2013) Fe-rich and As-bearing vesuvianite and wiluite from Kozlov, Czech Republic. Am Mineral 98:1330–1337

    Article  Google Scholar 

  • Jannasch P (1884) Zur Kenntniss des Zusammensetzung des Vesuvians. Neues Jahrb Geol P-a 1:266–270

  • Jannasch P, Weingarten P (1896) Uber die chemische Zusammensetzung und Konstitution des Vesuvians und des Wiluits. Z Anorg Chem 11:40–48

  • Kim KJ, Koh TY, Kim CS, Lee YB (2014) Effects of tetrahedral Fe2+ on the structural, magnetic and electronic properties of solution-based titanomagnetite thin films. J Kor Phys Soc 64(1):93–97

  • Klaproth MH (1797) Untersuchung des Vesuvians, Vesuvian aus Sibirien, Beiträge zur chemischen Kenntniss der Mineralkörper, Zweiter Band, Rottmann Berlin, 33–38

  • Kraczka J, Żabiński W (2003) Mössbauer study of iron in some vesuvianites. Mineral Pol 34(1):37–44

  • Kravchinsky VA, Konstantinov KM, Courtillot V, Savrasov JI, Valet J-P, Cherniy SD, Mishenin SG, Parasotka BS (2002) Palaeomagnetism of East Siberian traps and kimberlites:two new poles and palaeogeographic reconstructions at about 360 and 250 Ma. Geophys J Int 148:1–33

  • Kurazhkovskaya VS, Borovikova EYu, Alferova MS (2005) Infrared spectra, unit cell parameters and optical character of boron-bearing vesuvianites and wiluites. Zap Ross Mineral Obsh 134(4):45–54 (in Russian)

  • Kurbatov SM (1946) Vesuvianites from the deposits of USSR. Leningrad University, St. Petersburg

    Google Scholar 

  • Lager GA, Xie Q, Ross FK, Rossman GR, Armbruster T, Rotella FJ, Schultz AJ (1999) Hydrogen-atom position in P4/nnc vesuvianite. Can Mineral 37:763–768

    Google Scholar 

  • Lussier AJ, Aguiar PM, Michaelis VK, Kroeker S, Hawthorne FC (2009) The occurrence of tetrahedrally coordinated Al and B in tourmaline: An 11B and 27Al MAS NMR study. Am Mineral 94:785–792

    Article  Google Scholar 

  • Lyachovich VV (1954) New data about mineralogy of Wiluy deposit of achtarandite. East-Siberian Branch Akad Nauk Ser Geol 1:85–116 (in Russian)

  • Lyachovich VV (1955) About new varieties of wiluite. Mineral Zbornik of L’vov 9:128–144 (in Russian)

  • Machatschki F (1932) Zur Formel des Vesuvian. Z Kristallogr 81:148–152

    Google Scholar 

  • Manning PG, Tricker MJ (1975) Optical absorption and Mössbauer spectral studies of iron and titanium site-populations in vesuvianites. Can Mineral 13:259–265

    Google Scholar 

  • Meinert LD, Dipple GM, Nocolescu S (2005) World Skarn Deposits. Economic Geol 100th Anniversary 299–336

  • Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  Google Scholar 

  • Ohkawa M (1994) Crystal structure and chemistry of vesuvianite. PhD thesis. J Sci Hiroshima Univ C 10(1):119–149

    Google Scholar 

  • Ohkawa M, Yoshiasa A, Takeno S (1992) Crystal chemistry of vesuvianite: Site preferences of square-pyramidal coordinated sites. Am Mineral 77:945–953

    Google Scholar 

  • Ohkawa M, Armbruster T, Galuskin E (2009): Structural investigation of low symmetry vesuvianite collected from Tojyo, Hiroshima, Japan: Implications for hydrogarnet-like substitution. Miner Petrol 104:69–76

  • Olejniczak Z, Żabiński W (1996) 27Al NMR study of white vesuvianite from Piz Lunghin, Switzerland. Miner Pol 27:41–45

  • Pallas PS (1781–96) (Neue) Nordische Beyträge zur physikalischen und geographischen Erd- und Volkerbeschreibung, Naturgeschichte und Oekonomie. Saint-Petersburg, Leipzig 7(8):5–7

  • Panikorovskii TL, Krivovichev SV, Zolotarev AA, Antonov AA (2016a) Crystal chemistry of low-symmetry (P4nc) vesuvianite from the Kharmankul’ Cordon (South Urals, Russia). Zap Ross Mineral Obsh 145(1):94–104 (in Russian)

  • Panikorovskii TL, Krivovichev SV, Galuskin EV, Shilovskikh VV, Mazur AS, Bazai AV (2016b) Si-deficient, OH-substituted, boron-bearing vesuvianite from Sakha-Yakutia, Russia: a combined single-crystal, 1H MAS-NMR and IR spectroscopic study. Eur J Mineral 28:931–941

    Article  Google Scholar 

  • Panikorovskii TL, Chukanov NV, Aksenov SM, Mazur AS, Avdontseva EY, Shilovskikh VV, Krivovichev SV (2017a) Alumovesuvianite, Ca19Al(Al,Mg)12Si18O69(OH)9, a new vesuvianite-group member from the Jeffrey mine, Asbestos, Estrie Region, Québec, Canada. Miner Petrol doi:10.1007/s00710-017-0495-1

  • Panikorovskii TL, Shilovskikh VV, Avdontseva EY, Zolotarev AA, Pekov IV, Britvin SN, Hålenius U, Krivovichev SV (2017b) Cyprine, Ca19Cu2+(Al,Mg)12Si18O69(OH)9, a new vesuvianite-group mineral from the Wessels mine, South Africa. Eur J Mineral. doi:10.1127/ejm/2017/0029-2592

    Google Scholar 

  • Panikorovskii TL, Shilovskikh VV, Avdontseva EY, Zolotarev AA, Karpenko VY, Mazur AS, Yakovenchuk VN, Krivovichev SV, Pekov IV (2017c) Magnesiovesuvianite, Ca19Mg(Al,Mg)12Si18O69(OH)9, a new vesuvianite-group mineral. J Geosci. doi:10.3190/jgeosci.229

  • Pavese A, Prencipe M, Tribaudino M, Aagaard SS (1998) X-ray and neutron single-crystal study of P4/n vesuvianite. Can Mineral 36:1029–1037

    Google Scholar 

  • Phillips BL, Allen FM, Kirkpatrick RJ (1987) High-resolution solid-state 27Al NMR spectroscopy of Mg-rich vesuvianite. Am Mineral 72:1190–1194

    Google Scholar 

  • Prendel PO (1887) About wiluite. Proc Imperial St.-Petersburg Mineral Soc 2:48–62 (in Russian)

  • Rice JM (1983) Metamorphism of rodingites; Part 1, Phase relations in a portion of the system CaO-MgO-A12O3-SiO2-CO2-H2O. Am J Sci 283-A:121–150

  • Rusakov VS, Kovalchuk RV, Borovikova EY, Kurazhkovskaya VS (2006) State of iron atoms in high vesuvianites according to Mössbauer spectroscopy data Zap Ross Mineral Obsh 135(4):91–100 (in Russian)

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–116

    Article  Google Scholar 

  • Shtukenberg AG, Punin YuO, Frank-Kamenetskaya OV, Kovalev OG, Sokolov PB (2001) On the origin of anomalous birefringence in grandite garnets. Mineral Mag 65:445–459

    Article  Google Scholar 

  • Tanaka T, Akizuki M, Hudoh Y (2002) Optical properties and crystal structure of triclinic growth sectors in vesuvianite. Mineral Mag 66:261–274

    Article  Google Scholar 

  • Veblen DR, Wiechmann MJ (1991) Domain structure of low-symmetry vesuvianite from Crestmore, California. Am Mineral 76:397–404

    Google Scholar 

  • Warren BE, Modell DI (1931) The structure of vesuvianite Ca10Al4(Mg,Fe)2Si9O34(OH)4. Z Kristallogr 78:422–432

    Google Scholar 

  • Wherry ET, Chapin WH (1908) Occurrence of boric acid in vesuvianite. J Am Chem Soc 30:1684–1687

    Article  Google Scholar 

  • Widman O (1890) Mineralanalytiska meddelanden från Upsala kemiska laboratorium. Geol Fören Stockholm Förh 127:20–29

  • Yesinowski JP, Eckert H, Rossman GR (1988) Characterization of hydrous species in minerals by high-speed 1H MAS-NMR. J Am Chem Soc 110:1367–1375

    Article  Google Scholar 

  • Żabiński W, Wactawska Z, Paluszkiewicz C (1996) Thermal decomposition of vesuvianite. J Therm Anal 46:1437–1447

    Article  Google Scholar 

  • Zakaznova-Herzog VP, Nesbitt HW, Bancroft GM, Tse JS (2008) Characterization of leached layers on olivine and pyroxenes using high-resolution XPS and density functional calculations. Geochim Cosm Acta 72:69–86

Download references

Acknowledgements

The authors are grateful to Gregory Yu. Ivanyuk for the photograph of the wiluite specimen. Thomas Armbruster, anonymous referee and editor Milan Rieder are thanked for critical reviews and helpful comments. This work was supported by the Russian Foundation for Basic Research (Grants No. 17-05-00145-a and 16-35-60101-mol-a-dk) and internal grant of St. Petersburg State University (No. 3.38.243.2015). Experimental studies were carried out using resources of the X-ray Diffraction Centre, Geo Environmental Centre “Geomodel”, “Physical Methods of Surface Investigation” and Centre for Magnetic Resonance of St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taras L. Panikorovskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panikorovskii, T.L., Mazur, A.S., Bazai, A.V. et al. X-ray diffraction and spectroscopic study of wiluite: implications for the vesuvianite-group nomenclature. Phys Chem Minerals 44, 577–593 (2017). https://doi.org/10.1007/s00269-017-0885-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0885-2

Keywords

Navigation