Skip to main content

Advertisement

Log in

Novel sensible thermal storage material from natural minerals

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Novel sensible thermal storage materials (TSM) were first synthesized via thermally treating the green compact obtained using clay, kaolin tailings, and hematite as major raw materials. The samples were characterized using differential scanning calorimetry and thermogravimetric, X-ray diffraction, thermal conductivities, petrography analysis, Fourier transformation infrared spectroscopy, and scanning electron microscopy. The thermal conductivity of the green compact reached 1.11–1.64 W m−1 K−1 after thermally treated at 200–1,000 °C. The clay component was proven to have a predominant effect on the thermal conductivity of the green compact. Kaolin tailings could act as a “modulator” for adjusting the thermal conductivity from 1.42 to 1.92 W m−1 K−1. Affecting mechanism of microstructural change of main components during sintering on thermal conductivity of TSM was prominently investigated. TSM could provide a potential candidate for thermal energy storage systems of concentrated solar power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amirthan G, Udaya kumar A, Balasubramanian M (2011) Thermal conductivity studies on Si/SiC ceramic composites. Ceram Int 37:423–426

    Article  Google Scholar 

  • Boddy A, Hooton RD, Gruber KA (2001) Long-term testing of the chloride-penetration resistance of concrete containing high-reactivity metakaolin. Cem Concr Res 31:759–765

    Article  Google Scholar 

  • Brett NH, MacKenzie KJD, Sharp JH (1970) The thermal decomposition of hydrous layer silicates and their related hydroxides. Q Rev Chem Rev 24:185–207

    Article  Google Scholar 

  • Budziak Fukamachi CR, Wypych F, Mangrich AS (2007) Use of Fe3+ ion probe to study the stability of urea-intercalated kaolinite by electron paramagnetic resonance. J Colloid Interface Sci 313:537–541

    Article  Google Scholar 

  • Chiritescu C, Cahill DG, Nguyen N, Johnson D, Bodapati A, Keblinski P, Zschack P (2007) Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315:351–353

    Article  Google Scholar 

  • Costescu RM, Cahill DG, Fabreguette FH, Sechrist ZA, George SM (2004) Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science 303:989–990

    Article  Google Scholar 

  • Cui Y, Liu C, Hu S, Yu X (2011) The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol Energy Mater Sol Cells 95:1208–1212

    Article  Google Scholar 

  • Darezereshki E (2011) One-step synthesis of hematite (α-Fe2O3) nano-particles by direct thermal-decomposition of maghemite. Mater Lett 65:642–645

    Article  Google Scholar 

  • Dincer I, Rosen MA (2010) Thermal energy storage: systems and applications, 2nd edn. Wiley, London

    Book  Google Scholar 

  • Du C, Yang H (2009) Simple synthesis and characterization of nanoporous materials from talc. Clays Clay Miner 57:290–301

    Article  Google Scholar 

  • Du C, Yang H (2010) Synthesis and characterization of zeolite 4A-type desiccant from kaolin. Am Mineral 95:741–746

    Article  Google Scholar 

  • Dubrawski JV (1987) The effect of particle size on the determination of quartz by differential scanning calorimetry. Thermochim Acta 120:257–260

    Article  Google Scholar 

  • Fernandez AI, Martínez M, Segarra M, Martorell I, Cabeza LF (2010) Selection of materials with potential in sensible thermal energy storage. Sol Energy Mater Sol Cells 94:1723–1729

    Article  Google Scholar 

  • Ferretto L, Glisenti A (2002) Study of the surface acidity of an hematite powder. J Mol Catal A Chem 187:119–128

    Article  Google Scholar 

  • Fthenakis V, Mason JE, Zweibel K (2009) The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US. Energy Policy 37:387–399

    Article  Google Scholar 

  • Gil A, Medrano M, Martorell I, Lázaro A, Dolado P, Zalba B, Cabeza LF (2010) State of the art on high temperature thermal energy storage for power generation. Part 1-concepts, materials and modellization. Renew Sustain Energy Rev 14:31–55

    Article  Google Scholar 

  • Goodson KE (2007) Ordering up the minimum thermal conductivity of solids. Science 315:342–343

    Article  Google Scholar 

  • He X, Tang A, Yang H, Ouyang J (2011) Synthesis and catalytic activity of doped TiO2-palygorskite composites. Appl Clay Sci 53:80–84

    Article  Google Scholar 

  • Hu PW, Yang HM (2010) Controlled coating of antimony-doped tin oxide nanoparticles on kaolinite particles. Appl Clay Sci 48:368–374

    Article  Google Scholar 

  • Jiang B, Sun Z, Liu M (2010) China’s energy development strategy under the low-carbon economy. Energy 35:4257–4264

    Article  Google Scholar 

  • Jin X, Gao L, Guo J (2002) The structural change of diphasic mullite gel studied by XRD and IR spectrum analysis. J Eur Ceram Soc 22:1307–1311

    Article  Google Scholar 

  • Katoh M, Orihara M, Moriga T, Nakabayashi I, Sugiyama S, Tanaka S (2001) In situ XRD and in situ IR spectroscopic analyses of structural change of goethite in methane oxidation. J Solid State Chem 156:225–229

    Article  Google Scholar 

  • Koh YK, Cao Y, Cahill DG, Jena D (2009) Heat-transport mechanisms in superlattices. Adv Funct Mater 19:610–615

    Article  Google Scholar 

  • Kouakou CH, Morel JC (2009) Strength and elasto-plastic properties of non-industrial building materials manufactured with clay as a natural binder. Appl Clay Sci 44:27–34

    Article  Google Scholar 

  • Laing D, Steinmann W-D, Tamme R, Richter C (2006) Solid media thermal storage for parabolic trough power plants. Sol Energy 80:1283–1289

    Article  Google Scholar 

  • Laing D, Steinmann WD, Fiss M, Tamme R, Brand T, Bahl C (2008) Solid media thermal storage development and analysis of modular storage operation concepts for parabolic trough power plants. J Sol Energy Eng Trans ASME 130:011005–011006

    Article  Google Scholar 

  • Laing D, Bahl C, Bauer T, Fiss M, Breidenbach N, Hempel M (2012) High-temperature solid-media thermal energy storage for solar thermal power plants. Proc IEEE 100:516–524

    Google Scholar 

  • Li C, Fu L, Ouyang J, Yang H (2013) Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage. Sci Rep 3:1908

    Google Scholar 

  • Liu KC, Thomas G, Caballero A, Moya JS, de Aza S (1994) Time-temperature-transformation curves for kaolinite-α-alumina. J Am Ceram Soc 77:1545–1552

    Article  Google Scholar 

  • Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  Google Scholar 

  • Löffler L, Mader W (2006) Anisotropic X-ray peak broadening and twin formation in hematite derived from natural and synthetic goethite. J Eur Ceram Soc 26:131–139

    Article  Google Scholar 

  • Mao D, Yao J, Lai X, Yang M, Du J, Wang D (2011) Hierarchically mesoporous hematite microspheres and their enhanced formaldehyde-sensing properties. Small 7:578–582

    Article  Google Scholar 

  • Medrano M, Gil A, Martorell I, Potau X, Cabeza LF (2010) State of the art on high-temperature thermal energy storage for power generation. Part 2-case studies. Renew Sustain Energy Rev 14:56–72

    Article  Google Scholar 

  • Molgaard J, Smeltzer WW (1971) Thermal conductivity of magnetite and hematite. J Appl Phys 42:3644–3647

    Article  Google Scholar 

  • Nakata T, Silva D, Rodionov M (2011) Application of energy system models for designing a low-carbon society. Prog Energy Combust Sci 37:462–502

    Article  Google Scholar 

  • Poulier C, Smith DS, Absi J (2007) Thermal conductivity of pressed powder compacts: tin oxide and alumina. J Eur Ceram Soc 27:475–478

    Article  Google Scholar 

  • Prasad PSR, Prasad KS, Chaitanya VK, Babu E, Sreedhar B, Murthy SR (2006) In situ FTIR study on the dehydration of natural goethite. J Asian Earth Sci 27:503–511

    Article  Google Scholar 

  • Rivas Mercury J, Cabral A, Paiva A, Angélica R, Neves R, Scheller T (2011) Thermal behavior and evolution of the mineral phases of brazilian red mud. J Therm Anal Calorim 104:635–643

    Article  Google Scholar 

  • Ruan HD, Frost RL, Kloprogge JT (2001) The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite. Spectrochim Acta A Mol Biomol Spectrosc 57:2575–2586

    Article  Google Scholar 

  • Schelz JP (1976) The detection of quartz in clay minerals by differential thermal analysis. Thermochim Acta 15:17–28

    Article  Google Scholar 

  • Shukla A, Buddhi D, Sawhney RL (2009) Solar water heaters with phase change material thermal energy storage medium: a review. Renew Sustain Energy Rev 13:2119–2125

    Article  Google Scholar 

  • Siqueira RE, Andrade MM, Valezi DF, Carneiro CEA, Pinese JPP, da Costa ACS, Zaia DAM, Ralisch R, Pontuschka WM, Guedes CLB, Di Mauro E (2011) EPS, FT-IR and XRD investigation of soils from paraná, Brazil. Appl Clay Sci 53:42–47

    Article  Google Scholar 

  • Strezov V, Ziolkowski A, Evans T, Nelson P (2010) Assessment of evolution of loss on ignition matter during heating of iron ores. J Therm Anal Calorim 100:901–907

    Article  Google Scholar 

  • Tan Z, Li Z, Fan G, Guo Q, Kai X, Ji G, Zhang L, Zhang D (2013) Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer. Mater Des 47:160–166

    Article  Google Scholar 

  • Tarasi F, Medraj M, Dolatabadi A, Oberste-Berghaus J, Moreau C (2011) High-temperature performance of alumina-zirconia composite coatings containing amorphous phases. Adv Funct Mater 21:4143–4151

    Article  Google Scholar 

  • Toledano DS, Dufresne ER, Henrich VE (1998) Photoexcited Fe2O3 surfaces: properties and chemisorption. J Vac Sci Technol A 16:1050–1054

    Article  Google Scholar 

  • Van Bavel SS, Loos J (2010) Volume organization of polymer and hybrid solar cells as revealed by electron tomography. Adv Funct Mater 20:3217–3234

    Article  Google Scholar 

  • Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602

    Article  Google Scholar 

  • Viebahn P, Lechon Y, Trieb F (2011) The potential role of concentrated solar power (CSP) in Africa and Europe-a dynamic assessment of technology development, cost development and life cycle inventories until 2050. Energy Policy 39:4420–4430

    Article  Google Scholar 

  • Wang Z (2010) Prospectives for China’s solar thermal power technology development. Energy 35:4417–4420

    Article  Google Scholar 

  • Wang RZ, Zhai XQ (2010) Development of solar thermal technologies in China. Energy 35:4407–4416

    Article  Google Scholar 

  • Williges K, Lilliestam J, Patt A (2010) Making concentrated solar power competitive with coal: the costs of a European feed-in tariff. Energy Policy 38:3089–3097

    Article  Google Scholar 

  • Xin SG, Song LX, Zhao RG, Hu XF (2006) Composition and thermal properties of the coating containing mullite and alumina. Mater Chem Phys 97:132–136

    Article  Google Scholar 

  • Xu S, Okay AI, Ji S, Sengör AMC, Su W, Liu Y, Jiang L (1992) Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science 256:80–82

    Article  Google Scholar 

  • Yang H, Deng Y, Du C, Jin S (2010a) Novel synthesis of ordered mesoporous materials Al-MCM-41 from bentonite. Appl Clay Sci 47:351–355

    Article  Google Scholar 

  • Yang H, Tang A, Ouyang J, Li M, Mann S (2010b) From natural attapulgite to mesoporous materials: methodology, characterization and structural evolution. J Phys Chem B 114:2390–2398

    Article  Google Scholar 

  • Zhang Y, Yang H (2012) Co3O4 nanoparticles on the surface of halloysite nanotubes. Phys Chem Miner 39:789–795

    Article  Google Scholar 

  • Ziman JM (1960) Electrons and phonons. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Fund for Distinguished Young Scholars (51225403), the Specialized Research Fund for the Doctoral Program of Higher Education (20120162110079) and the Scientific Research Foundation for ROCS of SEM (2011-1139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Ouyang, J. & Yang, H. Novel sensible thermal storage material from natural minerals. Phys Chem Minerals 40, 681–689 (2013). https://doi.org/10.1007/s00269-013-0603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0603-7

Keywords

Navigation