Skip to main content
Log in

Stability at high-pressure, elastic behaviour and pressure-induced structural evolution of CsAlSi5O12, a potential host for nuclear waste

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (= 16.753(4), = 13.797(3) and = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V 0 = 1,155(4) Å3, K T0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a 3, b 3, c 3) for the volume. The refined axial-EoS parameters are: a 0 = 16.701(44) Å, K T0a = 14(2) GPa (βa = 0.024(3) GPa−1), K′ a = 6.2(8) for the a-axis; b 0 = 13.778(20) Å, K T0b = 21(3) GPa (βb = 0.016(2) GPa−1), K′ b = 10(2) for the b-axis; c 0 = 5.018(7) Å, K T0c = 33(3) GPa (βc = 0.010(1) GPa−1), K′ c = 3.2(8) for the c-axis (K T0a:K T0b:K T0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adl T, Vance ER (1982) CsAlSi5O12: a possible host for 137Cs immobilization. J Mater Sci 17:849–855

    Article  Google Scholar 

  • Allan DR, Angel RJ (1997) A high-pressure structural study of microcline (KAlSi3O8) to 7 GPa. Eur J Mineral 9:263–275

    Google Scholar 

  • Angel RJ (2000) Equation of state. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry, vol 41, pp 35–59. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America and Geochemical Society, Washington, USA

  • Angel RJ (2001) EoSFit v6.0. Computer program. Crystallography Laboratory, Dept. Geological Sciences, Virginia Tech, Blacksburg, USA. http://www.crystal.vt.edu

  • Angel RJ (2002) Absorb v5.2. Computer program. Crystallography Laboratory, Dept. Geological Sciences, Virginia Tech, Blacksburg, USA, http://www.crystal.vt.edu

  • Angel RJ, Allan DR, Miletich R, Finger LW (1997) The use of quartz as an internal pressure standard in high-pressure crystallography. J Appl Crystallogr 30:461–466

    Article  Google Scholar 

  • Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SD (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallogr 40:26–32

    Article  Google Scholar 

  • Annehed H, Fälth L (1984) The crystal structure of Cs0.35Al0.35Si2.65O6, a cesium-aluminosilicate with the bikitaite framework. Z Kristallogr 166:301–306

    Google Scholar 

  • Araki T (1980) Crystal structure of a cesium aluminosilicate, Cs[AlSi5O12]. Z Kristallogr 152:207–213

    Google Scholar 

  • Baerlocher Ch, Meier WM, Olson DH (2001) Atlas of zeolite framework types, Fifth Revised Version. Elsevier, Amsterdam

    Google Scholar 

  • Beger RM (1969) Crystal structure and composition of pollucite. Z Kristallogr 129:280–302

    Google Scholar 

  • Benusa MT, Angel RJ, Ross NL (2005) Compression of albite, NaAlSi3O8. Am Mineral 90:1115–1120

    Article  Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystal. Phys Rev 71:809–824

    Article  Google Scholar 

  • Bissert G, Liebau FN (1986) The crystal structure of a triclinic bikitaite, LiAlSi2O6·H2O. N Jb Miner Mh 6:241–252

    Google Scholar 

  • Bubnova RS, Krzhizhanovskaya MG, Filatov SK, Ugolkov VL, Paufler P (2007) XRD and DSC study of the formation and the melting of a new zeolite-like borosilicate CsBSi5O12 and (Cs, Rb) BSi5O12 solid solutions. Z Kristallogr 222:83–88

    Article  Google Scholar 

  • Burnham CW (1966) Computation of absorption corrections and the significance of end effects. Am Mineral 51:159–167

    Google Scholar 

  • Comodi P, Zanazzi PF, Weiss Z, Rieder M, Drábek M (1999) Cs-tetra-ferri-annite: high-pressure and high-temperature behaviour of a potential nuclear waste disposal phase. Am Mineral 84:325–332

    Google Scholar 

  • Comodi P, Gatta GD, Zanazzi PF (2003) Effects of pressure on the structure of bikitaite. Eur J Mineral 15:247–255

    Article  Google Scholar 

  • Drábek M, Rieder M, Viti C, Weiss Z, Frýda J (1998) Hydrothermal synthesis of a Cs ferruginous trioctahedral mica. Can Mineral 36:755–761

    Google Scholar 

  • Ferro O, Quartieri S, Vezzalini G, Fois E, Gamba A, Tabacchi G (2002) High-pressure behaviour of bikitaite: an integrated theoretical and experimental approach. Am Mineral 87:1415–1425

    Google Scholar 

  • Firor RL, Seff K (1977) Zero-coordinate K+. Crystal structure of dehydrated cesium and potassium exchanged zeolite A, Cs7K5-A. J Am Chem Soc 99:6249–6253

    Article  Google Scholar 

  • Fisch M, Armbruster Th, Kolesov B (2008) Temperature-dependent structural study of microporous CsAlSi5O12. J Solid State Chem 181:423–431

    Article  Google Scholar 

  • Fois E, Tabacchi G, Quartieri S, Vezzalini G (1999) Dipolar host/guest interactions and geometrical confinement at the basis of the stability of one-dimensional ice in zeolite bikitaite. J Chem Phys 111:355–359

    Article  Google Scholar 

  • Gallagher SA, McCarthy GJ, Smith DK (1977) Preparation and X-ray characterization of CsAlSiO4. Mater Res Bull 12:1183–1190

    Article  Google Scholar 

  • Gatta GD, Comodi P, Zanazzi PF (2003) New insights on high-pressure behaviour of microporous materials from X-ray single crystal data. Micropor Mesopor Mater 61:105–111

    Article  Google Scholar 

  • Gatta GD, Comodi P, Zanazzi PF, Boffa Ballaran T (2005) Anomalous elastic behavior and high-pressure structural evolution of zeolite levyne. Am Mineral 90:645–652

    Article  Google Scholar 

  • Gatta GD, Nestola F, Boffa Ballaran T (2006) Elastic behavior, phase transition and pressure induced structural evolution of analcime. Am Mineral 91:568–578

    Article  Google Scholar 

  • Gatta GD, Wells SA (2006) Structural evolution of zeolite levyne under hydrostatic and non-hydrostatic pressure: geometric modelling. Phys Chem Minerals 33:243–255

    Article  Google Scholar 

  • Gatta GD, Angel RJ (2007) Elastic behavior and pressure-induced structural evolution of nepheline: implications for the nature of the modulated superstructure. Am Mineral 92:1446–1455

    Article  Google Scholar 

  • Gottardi G, Galli E (1985) Natural zeolites. Springer, Berlin

  • Hawthorne FC, Cooper MA, Simmons WB, Falster AU, Laurs BM, Armbruster T, Rossman GR, Peretti A, Günter D, Grobéty B (2004) Pezzottaite Cs(Be2Li) Al2Si6O18. A spectacular new beryl-group mineral from the Sakavalana pegmatite, Fianarantsoa province, Madagascar. Min Rec 35:369–378

    Google Scholar 

  • Hess FL, Fahey JJ (1932) Cesium biotite from Custer County, South Dakota. Am Mineral 17:173–176

    Google Scholar 

  • Hughes RW, Weller MT (2002) The structure of the CAS type zeolite, Cs4[Al4Si20O48] by high-resolution powder neutron diffraction and 29Si MAS NMR. Micropor Mesopor Mater 51:189–196

    Article  Google Scholar 

  • Ito J (1976) Crystal synthesis of a new cesium alumosilicate, CsAlSi5O12. Am Mineral 61:170–171

    Google Scholar 

  • Klaska R (1977) Hydrothermalsynthesen und Strukturuntersuchungen zu kationenabhängigen Veränderungen von aufgefüllten Tetraedergerüsten aus dem Bereich der Feldspäte und seiner Vertreter. PhD Dissertation, Universität Hamburg, Germany

  • Klika Z, Weiss Z, Mellini M, Drábek M (2006) Water leaching of cesium from selected cesium mineral analogues. Appl Geochem 21:405–418

    Article  Google Scholar 

  • Komarneni S, Roy R (1983) Hydrothermal reaction and dissolution Studies of CsAlSi5O12 in water and brines. J Am Ceramic Soc 66:471–474

    Article  Google Scholar 

  • Kocman V, Gait RI, Rucklidge J (1974) The crystal structure of bikitaite. Am Mineral 59:71–78

    Google Scholar 

  • Mellini M, Weiss Z, Rieder M, Drábek M (1996) Cs-ferriannite as a possible host for waste cesium: crystal structure and synthesis. Eur J Mineral 8:1265–1271

    Google Scholar 

  • Miletich R, Allan DR, Kuhs WF (2000) High-pressure single-crystal techniques. In: Hazen Rm, Downs RT (eds) High-temperature and high-pressure crystal chemistry, vol 41, pp 445–519. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America and Geochemical Society, Washington, USA

  • Newnham RE (1967) Crystal structure and optical properties of pollucite. Am Mineral 52:1515–1518

    Google Scholar 

  • Ni YX, Hughes JM (1996) The crystal structure of nanpingite—2M2, the Cs end member of muscovite. Am Mineral 81:105–110

    Google Scholar 

  • Oxford Diffraction (2005) Oxford diffraction Ltd., Xcalibur CCD system, CrysAlis Software system

  • Sheldrick GM (1997) SHELX-97. Programs for crystal structure determination and refinement. University of Göttingen, Germany

    Google Scholar 

  • Taylor P, DeVaal S.D., Derrek G (1989) Owen Stability relationships between solid cesium aluminosilicates in aqueous solutions at 200°C. Can J Chem 67:76–81

    Google Scholar 

  • Tribaudino M, Benna P, Bruno E, Hanfland M (1999) High pressure behavior of lead feldspar (PbAl2Si2O8). Phys Chem Minerals 26:367–374

    Article  Google Scholar 

  • Vance TB, Seff K (1975) Hydrated and dehydrated crystal structure of seven-twelfths cesium exchanged zeolites A. J Phys Chem 79:2163–2166

    Article  Google Scholar 

  • Vance ER, Cartz L, Karioris FG (1984) X-ray diffraction and leaching of CsAlSi5O12 and CsZr2(PO4)3 irradiated by argon (3 MeV) ions. J Mater Sci 19:2943–2947

    Google Scholar 

  • Wilson AJC, Prince E (eds) (1999) International tables for X-ray Crystallography, volume C: Mathematical, physical and chemical tables, 2nd edn. Kluwer, Dordrecht

  • Zanardi S, Alberti A, Cruciani G, Corma A, Fornés V, Brunelli M (2004) Crystal structure determination of zeolite Nu-6(2) and its layered precursor Nu-6(1). Angew Chemie (Int Ed) 43:4933–4937

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Italian Ministry of University and Research, MIUR-Project: 2006040119_004 (grant to Alessandro Pavese). T.A. acknowledges support by the Swiss National Science Foundation, grant 200020-112198 “Crystal Chemistry of Minerals”. The authors thank Mr Bruno Pafundi for helping in the set-up of the high-pressure laboratory of crystallography at the Dipartimento di Scienze della Terra, Università degli Studi di Milano-Italy. The Editor Milan Rieder, Mark Welch and an anonymous reviewer are thanked.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Diego Gatta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatta, G.D., Rotiroti, N., Fisch, M. et al. Stability at high-pressure, elastic behaviour and pressure-induced structural evolution of CsAlSi5O12, a potential host for nuclear waste. Phys Chem Minerals 35, 521–533 (2008). https://doi.org/10.1007/s00269-008-0246-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0246-2

Keywords