Skip to main content
Log in

Kinetic study of the dehydroxylation of chrysotile asbestos with temperature by in situ XRPD

  • ORIGINAL PAPER
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

 The kinetics of the dehydroxylation of chrysotile was followed in situ at high temperature using real-time conventional and synchrotron powder diffraction (XRPD). This is the first time kinetics parameters have been calculated for the dehydroxylation of chrysotile. The value of the order of the reaction mechanism calculated using the Avrami model indicates that the rate-limiting step of the reaction is a one-dimensional diffusion with an instantaneous nucleation or a deceleratory rate of nucleation of the reaction product. Hence, the rate-limiting step is the one-dimensional diffusion of the water molecules formed in the interlayer region by direct condensation of two hydrogen atoms and an oxygen atom. The calculated apparent activation energy of the reaction in the temperature range 620–750 °C is 184 kJ mol−1. The diffusion path is along the axis of the fibrils forming the fibers. The amorphous or short-range ordered dehydroxylate of chrysotile is extremely unstable because forsterite readily nucleates in the Mg-rich regions. Moreover, it is less stable than the dehydroxylate of kaolinite, the so-called metakaolinite, which forms mullite at about 950 °C. This difference is interpreted in terms of the different nature of the two ions Mg2+ and Al3+ and their function as glass modifier and glass-forming ion, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 10 April 2002 / Accepted: 7 January 2003

Acknowledgements This work is part of a COFIN project (04 Scienze della Terra, NR 17, 2000) supported by MURST. Dr Dapiaggi is kindly acknowledged for help during the data collection at the Dipartimento di Scienze della Terra, University of Milan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cattaneo , A., Gualtieri , A. & Artioli, G. Kinetic study of the dehydroxylation of chrysotile asbestos with temperature by in situ XRPD. Phys Chem Minerals 30, 177–183 (2003). https://doi.org/10.1007/s00269-003-0298-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-003-0298-2

Navigation