Skip to main content

Advertisement

Log in

Geotechnology-Based Modeling to Optimize Conservation of Forest Network in Urban Area

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Forest network development in urban areas faces the challenge from forest fragmentation, human-induced disturbances, and scarce land resources. Here, we proposed a geotechnology-based modeling to optimize conservation of forest network by a case study of Wuhan, China. The potential forest network and their priorities were assessed using an improved least-cost path model and potential utilization efficiency estimation. The modeling process consists of four steps: (i) developing species assemblages, (ii) identifying core forest patches, (iii) identifying potential linkages among core forest patches, and (iv) demarcating forest networks. As a result, three species assemblages, including mammals, pheasants, and other birds, were identified as the conservation targets of urban forest network (UFN) in Wuhan, China. Based on the geotechnology-based model, a forest network proposal was proposed to fulfill the connectivity requirements of selected species assemblages. The proposal consists of seven forest networks at three levels of connectivity, named ideal networks, backbone networks, and comprehensive network. The action priorities of UFN plans were suggested to optimize forest network in the study area. Additionally, a total of 45 forest patches with important conservation significance were identified as prioritized stepping-stone patches in the forest network development. Urban forest conserve was also suggested for preserving woodlands with priority conservation significance. The presented geotechnology-based modeling is fit for planning and optimizing UFNs, because of the inclusion of the stepping-stone effects, human-induced pressures, and priorities. The framework can also be applied to other areas after a sensitivity test of the model and the modification of the parameters to fit the local environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

UFN:

Urban forest network

LCP model:

Least-cost path model

SSE:

Stepping-stone effect

PUE:

Potential utilization efficiency

References

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plann 64(4):233–247

    Article  Google Scholar 

  • Alberti M (2010) Maintaining ecological integrity and sustaining ecosystem function in urban areas. Curr Opin Environ Sustain 2(3):178–184

    Article  Google Scholar 

  • Alvey AA (2006) Promoting and preserving biodiversity in the urban forest. Urban For Urban Green 5(4):195–201

    Article  Google Scholar 

  • Baum KA, Haynes KJ, Dillemuth FP, Cronin JT (2004) The matrix enhances the effectiveness of corridors and stepping stones. Ecology 85(10):2671–2676

    Article  Google Scholar 

  • Beier P, Majka DR, Newell SL (2009) Uncertainty analysis of least-cost modeling for designing wildlife linkages. Ecol Appl 19(8):2067–2077

    Article  Google Scholar 

  • Bennett G (2004) Integrating biodiversity conservation and sustainable use: lessons learned from ecological networks. IUCN, Gland, Switzerland, and Cambridge, UK

    Google Scholar 

  • Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12(12):1394–1404

    Article  Google Scholar 

  • Boitani L, Falcucci A, Maiorano L, Rondinini C (2007) Ecological networks as conceptual frameworks or operational tools in conservation. Conserv Biol 21(6):1414–1422

    Article  Google Scholar 

  • Borruso G (2008) Network density estimation: a GIS approach for analysing point patterns in a network space. Trans GIS 12:377–402

    Article  Google Scholar 

  • Boyce MS, McDonald LL (1999) Relating populations to habitats using resource selection functions. Trends Ecol Evol 14(7):268–272

    Article  Google Scholar 

  • Buchanan GM, Donald PF, Butchart SHM (2011) Identifying priority areas for conservation: a global assessment for forest-dependent birds. PLoS One 6(12):10

    Article  Google Scholar 

  • Carroll C, Dunk JR, Moilanen A (2010) Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest USA. Glob Chang Biol 16(3):891–904

    Article  Google Scholar 

  • Chetkiewicz CLB, Boyce MS (2009) Use of resource selection functions to identify conservation corridors. J Appl Ecol 46(5):1036–1047

    Article  Google Scholar 

  • Cook EA (2002) Landscape structure indices for assessing urban ecological networks. Landsc Urban Plan 58(2–4):269–280

    Article  Google Scholar 

  • Da L, Chen K, Xin Y (2004) The scale of ecological corridor in the urban forest of Shanghai. J Northeast For Univ 32(4):16–18

    Google Scholar 

  • Dai ZX, Yang QR (1995) The birds of the Guizishan Wuchang. J Cent China Norm Univ (Nat Sci) 29(2):242–247

    Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025):53–58

    Article  CAS  Google Scholar 

  • Day JW, Hall CA, Yanez-Arancibia A, Pimentel D, Marti CI, Mitsch WJ (2009) Ecology in times of scarcity. Bioscience 59(4):321–331

    Article  Google Scholar 

  • Devoto M, Bailey S, Craze P, Memmott J (2012) Understanding and planning ecological restoration of plant-pollinator networks. Ecol Lett 15(4):319–328

    Article  Google Scholar 

  • Didier KA, Glennon MJ, Novaro A, Sanderson EW, Strindberg S, Walker S, Di Martino S (2009) The landscape species approach: spatially-explicit conservation planning applied in the Adirondacks USA and San Guillermo-Laguna Brava Argentina landscapes. Oryx 43(4):476–487

    Article  Google Scholar 

  • Epps CW, Wehausen JD, Bleich VC, Torres SG, Brashares JS (2007) Optimizing dispersal and corridor models using landscape genetics. J Appl Ecol 44(4):714–724

    Article  Google Scholar 

  • Escobedo FJ, Kroeger T, Wagner JE (2011) Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environ Pollut 159(8–9):2078–2087

    Article  CAS  Google Scholar 

  • Foltête JC, Berthier K, Cosson JF (2008) Cost distance defined by a topological function of landscape. Ecol Model 210(1–2):104–114

    Article  Google Scholar 

  • García-Feced C, Saura S, Elena-Rossello R (2011) Improving landscape connectivity in forest districts: a two-stage process for prioritizing agricultural patches for reforestation. For Ecol Manag 261(1):154–161

    Article  Google Scholar 

  • Gillies CS, Beyer HL, St Clair CC (2011) Fine-scale movement decisions of tropical forest birds in a fragmented landscape. Ecol Appl 21(3):944–954

    Article  Google Scholar 

  • Girvetz EH, Jaeger JAG, Thorne JH (2007) Comment on “Roadless space of the conterminous United States”. Science 318(5854):2

    Article  Google Scholar 

  • Groves CR, Jensen DB, Valutis LL, Redford KH, Shaffer ML, Scott JM, Baumgartner JV, Higgins JV, Beck MW, Anderson MG (2002) Planning for biodiversity conservation: putting conservation science into practice. Bioscience 52(6):499–512

    Article  Google Scholar 

  • Gutman G, Ignatov A (1998) The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int J Remote Sens 19:1533–1543

    Article  Google Scholar 

  • He C, Liu Z, Tian J, Ma Q (2014) Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective. Glob Chang Biol 20(9):2886–2902

    Article  Google Scholar 

  • Hernández A, Miranda M, Arellano EC, Saura S, Ovalle C (2015) Landscape dynamics and their effect on the functional connectivity of a Mediterranean landscape in Chile. Ecol Ind 48:198–206

    Article  Google Scholar 

  • Humphries HC, Bourgeron PS, Reynolds KM (2008) Suitability for conservation as a criterion in regional conservation network selection. Biodivers Conserv 17(3):467–492

    Article  Google Scholar 

  • Ignatieva M, Stewart GH, Meurk C (2011) Planning and design of ecological networks in urban areas. Landsc Ecol Eng 7(1):17–25

    Article  Google Scholar 

  • IUCN (2010) IUCN red list of threatened species. Version 2010.1. http://www.iucnredlist.org. Accessed 11 Aug 2010

  • Jenks GF, Caspall FC (1971) Error on choroplethic maps: definition measurement reduction. Ann Assoc Am Geogr 61:217–244

    Article  Google Scholar 

  • Jiang J, Xu S (1996) Wuhan local chronicles: total categories. Wuhan University Press, Wuhan

    Google Scholar 

  • Jongman RH, Bouwma IM, Griffioen A, Jones-Walters L, Van Doorn AM (2011) The pan European ecological network: PEEN. Landsc Ecol 26(3):311–326

    Article  Google Scholar 

  • Kangas K, Luoto M, Ihantola A, Tomppo E, Siikamaki P (2010) Recreation-induced changes in boreal bird communities in protected areas. Ecol Appl 20(6):1775–1786

    Article  CAS  Google Scholar 

  • Kong FH, Yin HW, Nakagoshi N, Zong YG (2010) Urban green space network development for biodiversity conservation: identification based on graph theory and gravity modeling. Landsc Urban Plan 95(1–2):16–27

    Article  Google Scholar 

  • Kramer-Schadt S, Kaiser TS, Frank K, Wiegand T (2011) Analyzing the effect of stepping stones on target patch colonisation in structured landscapes for Eurasian lynx. Landsc Ecol 26(4):501–513

    Article  Google Scholar 

  • Li D (1979) Avian fauna and ecological distribution in summer in Wuhan China. J Cent China Norm Univ (Nat Sci) 13(3):70–83

    Google Scholar 

  • Li HL, Li DH, Li T, Qiao Q, Yang J, Zhang HM (2010a) Application of least-cost path model to identify a giant panda dispersal corridor network after the Wenchuan earthquake-case study of Wolong Nature Reserve in China. Ecol Model 221(6):944–952

    Article  Google Scholar 

  • Li TA, Shilling F, Thorne J, Li FM, Schott H, Boynton R, Berry AM (2010b) Fragmentation of China’s landscape by roads and urban areas. Landsc Ecol 25(6):839–853

    Article  Google Scholar 

  • McDonald RI, Marcotullio PJ, Güneralp B (2013) Urbanization and global trends in biodiversity and ecosystem services. In: Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S,Schewenius M, Sendstad M, Seto KC, Wilkinson C (eds) Urbanization, biodiversity and ecosystem services: Challenges and opportunities. Springer, Netherlands, pp 32–52

    Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology evolution and conservation. Ecology 89(10):2712–2724

    Article  Google Scholar 

  • Minor ES, Urban DL (2008) A graph-theory frarmework for evaluating landscape connectivity and conservation planning. Conserv Biol 22(2):297–307

    Article  Google Scholar 

  • Olson DM, Dinerstein E (2002) The global 200: priority ecoregions for global conservation. Ann Mo Bot Gard 89(2):199–224

    Article  Google Scholar 

  • Opdam P, Steingrover E, van Rooij S (2006) Ecological networks: a spatial concept for multi-actor planning of sustainable landscapes. Landsc Urban Plan 75(3–4):322–332

    Article  Google Scholar 

  • Pullinger MG, Johnson CJ (2010) Maintaining or restoring connectivity of modified landscapes: evaluating the least-cost path model with multiple sources of ecological information. Landsc Ecol 25(10):1547–1560

    Article  Google Scholar 

  • Rayfield B, Fortin MJ, Fall A (2010) The sensitivity of least-cost habitat graphs to relative cost surface values. Landsc Ecol 25(4):519–532

    Article  Google Scholar 

  • Rayfield B, Fortin MJ, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92(4):847–858

    Article  Google Scholar 

  • Ren Y, Wei X, Wei X, Pan J, Xie P, Song X, Peng D, Zhao J (2011) Relationship between vegetation carbon storage and urbanization: a case study of Xiamen China. For Ecol Manag 261(7):1214–1223

    Article  Google Scholar 

  • Sanderson EW, Huron A (2011) Conservation in the City. Conserv Biol 25(3):421–423

    Article  Google Scholar 

  • Sandstrom UG, Angelstam P, Khakee A (2006a) Urban comprehensive planning—identifying barriers for the maintenance of functional habitat networks. Landsc Urban Plan 75(1–2):43–57

    Article  Google Scholar 

  • Sandstrom UG, Angelstam P, Mikusinski G (2006b) Ecological diversity of birds in relation to the structure of urban green space. Landsc Urban Plan 77(1–2):39–53

    Article  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Saura S, Vogt P, Velazquez J, Hernando A, Tejera R (2011) Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. For Ecol Manag 262(2):150–160

    Article  Google Scholar 

  • Sawyer SC, Epps CW, Brashares JS (2011) Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes? J Appl Ecol 48(3):668–678

    Article  Google Scholar 

  • Schadt S, Revilla E, Wiegand T, Knauer F, Kaczensky P, Breitenmoser U, Bufka L, Cerveny J, Koubek P, Huber T, Stanisa C, Trepi L (2002) Assessing the suitability of central European landscapes for the reintroduction of Eurasian lynx. J Appl Ecol 39(2):189–203

    Article  Google Scholar 

  • Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci 109(40):16083–16088

    Article  CAS  Google Scholar 

  • Teng M, Zhou Z, Wang P, Xu Y, Wu C (2010) Landscape centrality and its applications in ecological network planning and management. Chin J Appl Ecol 21(4):863–872

    Google Scholar 

  • Theobald DM, Reed SE, Fields K, Soule M (2012) Connecting natural landscapes using a landscape permeability model to prioritize conservation activities in the United States. Conserv Lett 5(2):123–133

    Article  Google Scholar 

  • Tian L, Deng J, Yi L, Wan HX, Liu JW (2007) Structure and diversity of winter bird community in Guizi mountain area Hubei Province. Sichuan J Zool 26(1):157–160

    Google Scholar 

  • Uezu A, Beyer DD, Metzger JP (2008) Can agroforest woodlots work as stepping stones for birds in the Atlantic forest region? Biodivers Conserv 17(8):1907–1922

    Article  Google Scholar 

  • Urban DL, Minor ES, Treml EA, Schick RS (2009) Graph models of habitat mosaics. Ecol Lett 12(3):260–273

    Article  Google Scholar 

  • Valente RDA, Vettorazzi CA (2008) Definition of priority areas for forest conservation through the ordered weighted averaging method. For Ecol Manag 256(6):1408–1417

    Article  Google Scholar 

  • Watts K, Eycott AE, Handley P, Ray D, Humphrey JW, Quine CP (2010) Targeting and evaluating biodiversity conservation action within fragmented landscapes: an approach based on generic focal species and least-cost networks. Landsc Ecol 25(9):1305–1318

    Article  Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70:164–168

    Article  Google Scholar 

  • Xiao Z, Wang Y, Zhang Z, Ma Y (2001) Preliminary studies on the relationships between communities of small mammals and habitat types in Dujiangyan Region Sichuan. Chin Biodivers 10(2):163–169

    Google Scholar 

  • Yang Q, Zhang M, Dai Z, Zhang R, He D (1998) Studies on species diversity of mammals in Hubei province. J Cent China Norm Univ (Nat Sc) 32(3):352–358

    Google Scholar 

  • Zetterberg A, Mortberg UM, Balfors B (2010) Making graph theory operational for landscape ecological assessments planning and design. Landsc Urban Plan 95(4):181–191

    Article  Google Scholar 

  • Zipperer WC, Foresman TW, Walker SP, Daniel CT (2012) Ecological consequences of fragmentation and deforestation in an urban landscape: a case study. Urban Ecosyst 15(3):533–544

    Article  Google Scholar 

Download references

Acknowledgments

This study has been sponsored by the National Natural Science Foundation of China (31300589), the National Science and Technology Supporting Program of China (2013BAJ02B01), and the Long-term Track Research Program of National Forest Ecological Station in Three Gorges Reservoir Region (Zigui) of the Yangtze River, China. The authors greatly appreciate the thorough review and valuable comments from the anonymous reviewers on how to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhixiang Zhou or Wenfa Xiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

267_2015_642_MOESM1_ESM.txt

Supplementary 1: The code of the batch process for least-cost path model based on Python and ArcGIS. Supplementary material 1 (TXT 4 kb)

267_2015_642_MOESM2_ESM.txt

Supplementary 2: The code of the batch process for converting the generated least-cost paths from raster to point in format. Supplementary material 2 (TXT 2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, M., Zhou, Z., Wang, P. et al. Geotechnology-Based Modeling to Optimize Conservation of Forest Network in Urban Area. Environmental Management 57, 601–619 (2016). https://doi.org/10.1007/s00267-015-0642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-015-0642-6

Keywords

Navigation