Skip to main content

Advertisement

Log in

Literature Review to Optimize the Autologous Fat Transplantation Procedure and Recent Technologies to Improve Graft Viability and Overall Outcome: A Systematic and Retrospective Analytic Approach

  • Original Article
  • Non-Surgical Aesthetic
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Objective

Investigation and evaluation of the current methods and steps of autologous fat transplantation to optimize the viability of fat grafts and procedure outcome in quest of a more standardized protocol.

Methods

A thorough literature search was performed across the CNKI, Wan Fang, PubMed, Ovid and EMBASE databases from the year 1970 to December 2014, collecting and classifying all of the autologous fat transplantation-related reports and articles, and after screening, a critical retrospective analysis was performed on the included data.

Results

A total of 65 articles were included in the study. However, there were limited numbers of cases dealing with procedure-related steps such as the selection of donor sites, fat acquisition, graft treatment and methodology of transplant, resulting in a significant lack of evidence support, furthermore urging the need for more standardized protocol for the steps of autologous fat transplant to improve graft viability and overall outcome while decreasing procedure-related morbidity.

Conclusion

No good evidence was obtained to optimize the donor site, acquisition, processing and transplantation steps of the whole process of autologous fat transplantation. Tissue engineering and stem cell research have the potential to revolutionize the future of reconstructive surgery by replacing tissue, obviating the need for donor site morbidity. However, the use of stem cell therapies to expand and grow tissue for reconstruction must occur in the context of risk management. Balancing ease of harvest with yield and efficacy has been a delicate and often difficult trade-off which has prompted the scientific community to investigate alternative sources. However, there is much hope in the evaluation and implementation of multimodality approaches for autologous fat transplant, including thriving technologies such as ultrasound-assisted, water jet-assisted, nanotechnology-assisted liposuction in combination with revolutionary fat treatment technologies such as the VASER system.

Level of Evidence IV

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wenge L, Yanyi Z et al (2009) Factors influencing the survival of free fat particle after transplantation. Chin J Med Aesthet Cosmetol 15(4):237–239

    Google Scholar 

  2. Lam SM, Glasgold RA, Glasgold MJ (2008) Limitations, complications, and long-term sequelae of fat transfer. Facial Plast Surg Clin N Am 16(4):391–399

    Article  Google Scholar 

  3. Zocchi ML, Zuliani F (2008) Bicompartmental breast lipostructuring. Aesthetic Plast Surg 32:313–328

    Article  CAS  PubMed  Google Scholar 

  4. Wolf GA, Gallego S, Patron AS et al (2006) Magnetic resonance imaging assessment of gluteal fat grafts. Aesthetic Plast Surg 30:460–468

    Article  PubMed  Google Scholar 

  5. Niechajev I, Sevcuk O (1994) Long-term results of fat transplantation: clinical and histologic studies. Plast Reconstr Surg 94:496–506

    Article  CAS  PubMed  Google Scholar 

  6. Delay E, Garson S, Tousson G, Sinna R (2009) Fat injection to the breast: technique, results, and indications based on 880 procedures over 10 years. Aesthet Surg J 29:360–376

    Article  PubMed  Google Scholar 

  7. Park S, Kim B, Shin Y (2011) Correction of superior sulcus deformity with orbital fat anatomic repositioning and fat graft applied to retro-orbicularis oculi fat for Asian eyelids. Aesthetic Plast Surg 35:162–170

    Article  PubMed  Google Scholar 

  8. Rubin A, Hoefflin SM (2002) Fat purification: survival of the fittest. Plast Reconstr Surg 109:1463–1464

    Article  PubMed  Google Scholar 

  9. Markman B (1989) Anatomy and physiology of adipose tissue. Clin Plast Surg 16(2):235–244

    CAS  PubMed  Google Scholar 

  10. Chasan PE, Rahban SR (2000) Presacral donor site for lip augmentation. Aesthetic Plast Surg 24:31–33

    Article  CAS  PubMed  Google Scholar 

  11. Hudson DA, Lambert EV, Block CE (1990) Site selection for fat auto-transplantation: some observations. Aesthetic Plast Surg 14:195–197

    Article  CAS  PubMed  Google Scholar 

  12. Rohrich RJ, Sorokin ES, Brown SA (2004) In search of improved fat transfer viability: a quantitative analysis of the role of centrifugation and harvest site. Plast Reconstr Surg 113:391–395

    Article  PubMed  Google Scholar 

  13. Ullmann Y, Shoshani O, Fodor A (2005) Searching for the favorable donor site for fat injection: in vivo study using the nude mice model. Dermatol Surg 31:1304–1307

    Article  CAS  PubMed  Google Scholar 

  14. Nan Y (2006) Clinical study on the effect of different fat extraction sites on the injection of autologous fat particles. Chin Cosmestol 07:775–777

    Google Scholar 

  15. Zhu M, Zhou Z, Chen Y (2010) Supplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retention. Ann Plast Surg 64:222–228

    Article  CAS  PubMed  Google Scholar 

  16. Padoin AV, Braga-Silva J, Martins P et al (2008) Sources of processed lipoaspirate cells: influence of donor site on cell concentration. Plast Reconstr Surg 122:614–618

    Article  CAS  PubMed  Google Scholar 

  17. Gir P, Brown SA, Oni G et al (2012) Fat grafting: evidence-based review on autologous fat harvesting, processing, reinjection, and storage. Plast Reconstr Surg 130:249–258

    Article  CAS  PubMed  Google Scholar 

  18. Ullmann Y, Shoshani O, Fodor A et al (2005) Searching for the favorable donor site for fat injection: in vivo study using the nude mice model. Dermatol Surg 31:1304–1307

    Article  CAS  PubMed  Google Scholar 

  19. Kaufman MR, Bradley JP, Dickinson B et al (2007) Autologous fat transfer consensus survey: trends in techniques for harvest, preparation, and application, and perception of short- and long-term results. Plast Reconstr Surg 119:323–331

    Article  CAS  PubMed  Google Scholar 

  20. Pu LL, Cui X, Fink BF (2005) The viability of fatty tissues within adipose aspirates after conventional liposuction: a comprehensive study. Ann Plast Surg 03:288–292

    Google Scholar 

  21. Trepsat F (2003) Periorbital rejuvenation combining fat grafting and blepharoplasties. Aesthetic Plast Surg 27:243–253

    Article  PubMed  Google Scholar 

  22. Moore JH Jr, Kolaczynski JW, Morales LM et al (1995) Viability of fat obtained by syringe suction lipectomy: effects of local anesthesia with lidocaine. Aesthetic Plast Surg 19:335–339

    Article  PubMed  Google Scholar 

  23. Shoshani O, Berger J, Fodor L et al (2005) The effect of lidocaine and adrenaline on the viability of injected adipose tissue: an experimental study in nude mice. J Drugs Dermatol 4:311–316

    PubMed  Google Scholar 

  24. Kim IH, Yang JD, Lee DG, Chung HY, Cho BC (2009) Evaluation of centrifugation technique and effect of epinephrine on fat cell viability in autologous fat injection. Aesthet Surg J 29:35–39

    Article  PubMed  Google Scholar 

  25. Keck M, Janke J, Ueberreiter K (2009) Viability of preadipocytes in vitro: the influence of local anesthetics and pH. Dermatol Surg 35:1251–1257

    Article  CAS  PubMed  Google Scholar 

  26. Keck M, Zeyda M, Gollinger K et al (2010) Local anesthetics have a major impact on viability of preadipocytes and their differentiation into adipocytes. Plast Reconstr Surg 126:1500–1505

    Article  CAS  PubMed  Google Scholar 

  27. Karacalar A, Ozcan M (1998) Liposuction of the kneecap area under tourniquet: a superdry procedure. Aesthetic Plast Surg 22:408–411

    Article  CAS  PubMed  Google Scholar 

  28. Livaoglu M, Buruk CK, Uraloglu M et al (2012) Effects of lidocaine plus epinephrine and prilocaine on autologous fat graft survival. J Craniofac Surg 23:1015–1018

    Article  PubMed  Google Scholar 

  29. Girard A-C, Atlan M, Bencharif K (2013) New insights into lidocaine and adrenaline effects on human adipose stem cells. Aesthet Plast Surg 37:144–152

    Article  Google Scholar 

  30. Coleman SR (1997) Facial recontouring with lipostructure. Clin Plast Surg 24:347–367

    CAS  PubMed  Google Scholar 

  31. Nordstrom REA (1997) “Spaghetti” fat grafting: a new technique. Plast Reconstr Surg 99:917–918

    Article  CAS  PubMed  Google Scholar 

  32. Tzikas TL (2004) Lipografting: autologous fat grafting for total facial rejuvenation. Facial Plast Surg 20:135–143

    Article  PubMed  Google Scholar 

  33. Pu LL, Coleman SR, Cui X et al (2008) Autologous fat grafts harvested and refined by the Coleman technique: a comparative study. Plast Reconstr Surg 122:932–937

    Article  CAS  PubMed  Google Scholar 

  34. Huss FR, Kratz G (2002) Adipose tissue processed for lipoinjection shows increased cellular survival in vitro when tissue engineering principles are applied. Scand J Plast Reconstr Surg Hand Surg 36:166–171

    Article  PubMed  Google Scholar 

  35. Pu LL, Cui X, Fink BF, Cibull ML, Gao D (2008) The viability of fatty tissues within adipose aspirates after conventional liposuction: a comprehensive study. Ann Plast Surg 54:288–292 (discussion 292)

    Google Scholar 

  36. Fagrell D, Enestrom S, Berggren A et al (1996) Fat cylinder transplantation: an experimental comparative study of three different kinds of fat transplants. Plast Reconstr Surg 98:90

    Article  CAS  PubMed  Google Scholar 

  37. Chi QW, Yangbin X et al (2012) Experimental and preliminary clinical study of axial fat transplantation. Chin J Surg Reconstr 26:576–582

    Google Scholar 

  38. Nguyen A, Pasyk KA, Bouvier TN (1990) Comparative study of survival of autologous adipose tissue taken and transplanted by different techniques. Plast Reconstr Surg 85:378–386

    Article  CAS  PubMed  Google Scholar 

  39. He ZX, Donglai G, Jianhua G (2001) The observation of human body adipose tissue damage degree by the method of drawing. Chin J Plast Surg 17(5):290–291

    Google Scholar 

  40. Hua L, Qingfeng L (2005) Study on the activity of fat particles by glucose transfer. Chin J Plast Surg 05:375–378

    Google Scholar 

  41. Hua L, Qingfeng L (2005) Study on the effect of suction negative pressure on the activity of extracted fat particles. Chin J Cosmetol 14:27–30

    Google Scholar 

  42. Leong DT, Hutmacher DW, Chew FT, Lim TC (2005) Viability and adipogenic potential of human adipose tissue processed cell population obtained from pump-assisted and syringe-assisted liposuction. J Dermatol Sci 37:169–176

    Article  PubMed  Google Scholar 

  43. William PS, Adams P et al (2006) Autologous human fat grafting: effect of harvesting and preparation techniques on adipocyte graft survival. Plast Reconstr Surg 117:1836–1844

    Article  Google Scholar 

  44. Gonzalez AM et al (2007) An alternative method for harvest and processing fat grafts: an in vitro study of cell viability and survival. Plast Reconstr Surg 120:285–294

    Article  CAS  PubMed  Google Scholar 

  45. Lalikos JF, Li YQ, Roth T et al (1997) Biochemical assessment of cellular damage after adipocyte harvest. J Surg Res 70:95–100

    Article  CAS  PubMed  Google Scholar 

  46. Shiffman MA, Mirrafati S (2001) Fat transfer techniques: the effect of harvest and transfer methods on adipocyte viability and review of the literature. Dermatol Surg 7:819–826

    Google Scholar 

  47. Ozsoy Z, Kul Z, Bilir A (2006) The role of cannula diameter in improved adipocyte viability: a quantitative analysis. Aesthet Surg J 26:287–289

    Article  CAS  PubMed  Google Scholar 

  48. Erdim M, Tezel E, Numanoglu A, Sav A (2009) The effects of the size of liposuction cannula on adipocyte survival and the optimum temperature for fat graft storage: an experimental study. Plast Reconstr Aesthet Surg 62:1210–1214

    Article  Google Scholar 

  49. Gonzalez AM, Lobocki C, Kelly CP (2007) An alternative method for harvest and processing fat grafts: an in vitro study of cell viability and survival. Plast Reconstr Surg 120:285–294

    Article  CAS  PubMed  Google Scholar 

  50. Nguyen PS, Desouches C, Gay AM et al (2012) Development of micro-injection as an innovative autologous fat graft technique: the use of adipose tissue as dermal filler. Plast Reconstr Aesthet Surg 65:1692–1699

    Article  CAS  Google Scholar 

  51. Rennekampff HO, Reimers K, Gabka CJ et al (2010) Current perspective and limitations of autologous fat transplantation. Handchir Mikrochir Plast Chir 42:137–142

    Article  PubMed  Google Scholar 

  52. Kaufman MR, Bradley JP, Dickinson B et al (2007) Autologous fat transfer consensus survey: trends in techniques for harvest, preparation, and application, and perception of short- and long-term results. Plast Reconstr Surg 119:323–331

    Article  CAS  PubMed  Google Scholar 

  53. Butterwick KJ (2002) Lipoaugmentation for aging hands: a comparison of the longevity and aesthetic results of centrifuged versus noncentrifuged fat. Dermatol Surg 28:987–991

    PubMed  Google Scholar 

  54. Khater R, Atanassova P, Anastassov Y, Pellerin P, Martinot DV (2009) Clinical and experimental study of autologous fat grafting after processing by centrifugation and serum lavage. Aesthetic Plast Surg 33:37–43

    Article  PubMed  Google Scholar 

  55. Conde Green A, de Amorim NF, Pitanguy I (2010) Influence of decantation, washing and centrifugation on adipocyte and mesenchymal stem cell content of aspirated adipose tissue: a comparative study. J Plast Reconstr Aesthet Surg 63:1375–1381

    Article  PubMed  Google Scholar 

  56. Conde Green A, Baptista LS, de Amorin NF et al (2010) Effects of centrifugation on cell composition and viability of aspirated adipose tissue processed for transplantation. Aesthet Surg J 30:249–255

    Article  PubMed  Google Scholar 

  57. Botti G, Pascali M, Botti C, Bodog F, Cervelli V (2011) A clinical trial in facial fat grafting: filtered and washed versus centrifuged fat. Plast Reconstr Surg 127:2464–2473

    Article  CAS  PubMed  Google Scholar 

  58. Ramon Y, Shoshani O, Peled IJ et al (2005) Enhancing the take of injected adipose tissue by a simple method for concentrating fat cells. Plast Reconstr Surg 115:197–201

    CAS  PubMed  Google Scholar 

  59. Rose JG Jr, Lucarelli MJ, Lemke BN et al (2006) Histologic comparison of autologous fat processing methods. Ophthal Plast Reconstr Surg 22:195–200

    Article  PubMed  Google Scholar 

  60. Smith P, Adams WP Jr, Lipschitz AH et al (2006) Autologous human fat grafting: effect of harvesting and preparation techniques on adipocyte graft survival. Plast Reconstr Surg 117:1836–1844

    Article  CAS  PubMed  Google Scholar 

  61. Minn KW, Min KH, Chang H, Kim S, Heo EJ (2010) Effects of fat preparation methods on the viabilities of autologous fat grafts. Aesthetic Plast Surg 34:626–631

    Article  PubMed  Google Scholar 

  62. Ferraro GA, De Francesco F, Tirino V et al (2011) Effects of a new centrifugation method on adipose cell viability for autologous fat grafting. Aesthetic Plast Surg 35:341–348

    Article  PubMed  Google Scholar 

  63. Boschert MT, Beckert BW, Puckett CL, Concannon MJ (2002) Analysis of lipocyte viability after liposuction. Plast Reconstr Surg 109:761–765

    Article  PubMed  Google Scholar 

  64. Kurita M, Matsumoto D, Shigeura T et al (2008) Influences of centrifugation on cells and tissues in liposuction aspirates: optimized centrifugation for lipotransfer and cell isolation. Plast Reconstr Surg 121:1033–1041

    Article  CAS  PubMed  Google Scholar 

  65. Xie Y, Zheng D, Li Q, Chen H, Lei H, Pu LL (2010) The effect of centrifugation on viability of fat grafts: an evaluation with the glucose transport test. Plast Reconstr Aesthet Surg 63:482–487

    Article  Google Scholar 

  66. Pulsfort AK, Wolter TP, Pallua N (2011) The effect of centrifugal forces on viability of adipocytes in centrifuged lipoaspirates. Ann Plast Surg 66:292–295

    Article  CAS  PubMed  Google Scholar 

  67. Zimmerlin L, Rubin JP, Pfeifer ME et al (2013) Human adipose stromal vascular cell delivery in a fibrin spray. Cytotherapy 15(1):102–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ferguson RE, Cui X, Fink BF (2008) The viability of autologous fat grafts harvested with the LipiVage system: a comparative study. Ann Plast Surg 60(5):594–597

    Article  CAS  PubMed  Google Scholar 

  69. Lee LQ, Coleman SR (2006) American society of plastic surgeons, viability of autologous fat grafts harvested with the Coleman technique and LipiVage system: a controlled study. Plast Reconstr Surg 118(Suppl)

  70. Zocchi ML (1992) Ultrasonic liposculpturing. Aesthetic Plast Surg 16(4):287–298

    Article  CAS  PubMed  Google Scholar 

  71. Zocchi ML (1996) Ultrasonic assisted lipoplasty: technical refinements and clinical evaluations. Clin Plast Surg 23(4):575–598

    CAS  PubMed  Google Scholar 

  72. Rohrich RJ, Morales DE, Krueger JE et al (2000) Comparative lipoplasty analysis of in vivo-treated adipose tissue. Plast Reconstr Surg 105:2152–2158 (discussion 2159–2160)

    Article  CAS  PubMed  Google Scholar 

  73. Garcia O, Nathan N (2008) Comparative analysis of blood loss in suction-assisted lipoplasty and third-generation internal ultrasound-assisted lipoplasty. Aesthetic Surg J 28(4):430–435

    Article  Google Scholar 

  74. Nagy MW, Vanek PF Jr (2012) A multicenter, prospective, randomized, single-blind, controlled clinical trial comparing VASER-assisted lipoplasty and suction-assisted lipoplasty. Plast Reconstr Surg 129(4):681–689

    Article  Google Scholar 

  75. Schafer ME, Hicok KC, Mills DC et al (2013) Acute adipocyte viability after third generation ultrasound-assisted liposuction. Asethet Surg J 33(5):698–704

    Article  Google Scholar 

  76. Sasaki GH (2011) Water-assisted liposuction for body contouring and lipoharvesting: safety and efficacy in 41 consecutive patients. Aesthet Surg J 31(1):76–88

    Article  PubMed  Google Scholar 

  77. Kaufman MR, Miller TA, Huang C et al (2007) Autologous fat transfer for facial recontouring: is there science behind the art. Plast Reconstr Surg 119(7):2287–2296

    Article  CAS  PubMed  Google Scholar 

  78. Chung MT, Zimmermann AS, Paik KJ et al (2013) Isolation of human adipose-derived stromal cells using laser-assisted liposuction and their therapeutic potential in regenerative medicine. Stem Cells Transl Med 2(10):808–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fournier PF (2000) Fat grafting: my technique. Dermatol Surg 26:1117–1128

    Article  CAS  PubMed  Google Scholar 

  80. Thanik VD, Chang CC, Lerman OZ (2009) A murine model for studying diffusely injected human fat. Plast Reconstr Surg 124(1):74–81

    Article  CAS  PubMed  Google Scholar 

  81. Xie Y, Zheng DN, Li QF et al (2010) An integrated fat grafting technique for cosmetic facial contouring. Plast Reconstr Aesthet Surg 63(2):270–276

    Article  Google Scholar 

  82. Changbing Z, Dawei W, Songlin Y (2006) The lacuna of autologous fat granules injection transplantation for the repair of facial depression. Chin J Cosmetol 15(10):1122–1124

    Google Scholar 

  83. Ohara H, Kishi K, Nakajima T (2010) The unilocular fat-cell graft. Plast Reconstr Aesthet Surg 63(3):488–492

    Article  CAS  Google Scholar 

  84. Ahm J, Mao JJ (2010) Adipose tissue engineering from adult human stem cells: a new concept in biosurgery. Facial Plast Surg 26(5):413–420. doi:10.1055/s-0030-1265022

    Article  Google Scholar 

  85. Banyard DA, Bourgeois JM, Widgerow AD et al (2015) Regenerative biomaterials: a review. Plast Reconstr Surg 135:1740–1748

    Article  CAS  PubMed  Google Scholar 

  86. Bellas E, Panilaitis BJ, Glettig DL et al (2013) Sustained volume retention in vivo with adipocyte and lipoaspirate seeded silk scaffolds. Biomaterials 34:2960–2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Keane TJ, Swinehart IT, Badylak SF (2015) Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 84:25–34

    Article  CAS  PubMed  Google Scholar 

  88. Bai S, Han H, Huang X et al (2015) Silk scaffolds with tunable mechanical capability for cell differentiation. Acta Biomater 20:22–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Itoi Y, Takatori M, Hyakusoku H et al (2010) Comparison of readily available scaffolds for adipose tissue engineering using adipose-derived stem cells. J Plast Reconstr Aesthet Surg 63:858–864

    Article  PubMed  Google Scholar 

  90. Phadke A, Chang CW, Varghese S (2010) Functional biomaterials for controlling stem cell differentiation. In: Roy K (ed) Biomaterials as stem cell niche. Springer, Berlin, pp 19–44

    Chapter  Google Scholar 

  91. Wei Y, Hu Y, Hao W et al (2008) A novel injectable scaffold for cartilage tissue engineering using adipose-derived adult stem cells. J Orthop Res 26:27–33

    Article  CAS  PubMed  Google Scholar 

  92. Kumar VA, Taylor NL, Shi S et al (2015) Self-assembling multidomain peptides tailor biological responses through biphasic release. Biomaterials 52:71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li Y, Meng H, Liu Y et al (2015) Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. Sci World J 2015:685690

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru Hong Zhang.

Ethics declarations

Conflict of interest

The authors hereby declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, Y.H., Zhang, R.H. Literature Review to Optimize the Autologous Fat Transplantation Procedure and Recent Technologies to Improve Graft Viability and Overall Outcome: A Systematic and Retrospective Analytic Approach. Aesth Plast Surg 41, 815–831 (2017). https://doi.org/10.1007/s00266-017-0793-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-017-0793-3

Keywords

Navigation