Skip to main content
Log in

Where are the males? The influence of bottom-up and top-down factors and sociability on the spatial distribution of a territorial ungulate

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

The factors that regulate the abundance and distribution of wild herbivores are key components of a species’ ecology and include bottom-up and top-down mechanisms, as well as aspects related to social organization. In territorial ungulates, males distribute themselves to enhance access to females by anticipating how resources will influence female distribution. Although the variables that influence the distribution of territorial males have implications for mating opportunities and reproductive success, these relationships remain largely unknown. We assessed how bottom-up, top-down and social factors influence the spatial distribution of territorial male guanacos (Lama guanicoe) in a semiarid ecosystem during three periods of the reproductive season, in a population with two alternative mating tactics: a resource-defence tactic adopted by family group males and a clustered territorial tactic adopted by solitary males. We conducted ground surveys of males from both social units and used density surface models to assess the influence of primary productivity, predation risk and female grouping on their spatial distribution. Our results showed that territorial males were more abundant in areas of increased primary productivity during the group formation period in years of good plant growth and higher number of females/female groups throughout the reproductive season, suggesting that both bottom-up and social traits regulate their spatial distribution. Predation risk did not significantly influence the abundance of territorial males. Overall, our research contributes to the understanding of territorial systems in ungulates and reinforces the current theory that bottom-up processes are relatively more important than top-down processes in regulating populations of large herbivores.

Significance statement

Many factors operate together to regulate the abundance and spatial distribution of territorial ungulates. Understanding these relationships has implications for mating opportunities and reproductive success. In this study, we combined field data with density surface models to assess the influence of bottom-up, top-down and social factors on the spatial distribution of a territorial ungulate during the reproductive season. We used the guanaco (Lama guanicoe), the main wild ungulate of the southern region of South America, as a study model. Our results suggest that in low-productivity environments, bottom-up (primary productivity) and social traits (female grouping) predominate in regulating the spatial distribution of territorial male guanacos, rather than top-down factors (predation risk). We highlight the possibility that different populations of herbivores respond differently depending on environmental conditions that shape both the quality and quantity of forage and predation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available in the open repository: Mendeley Data (10.17632/px3scyg968.2).

References

  • Acebes P, Malo JE, Traba J (2013) Trade-offs between food availability and predation risk in desert environments: the case of polygynous monomorphic guanaco (Lama guanicoe). J Arid Environ 97:136–142. https://doi.org/10.1016/j.jaridenv.2013.05.017

    Article  Google Scholar 

  • Alcock J (1987) The effects of experimental manipulation of resources on the behavior of two calopterygid damselflies that exhibit resource-defense polygyny. Can J Zool 65:2475–2482

    Article  Google Scholar 

  • Anderson DP, Turner MG, Forester JD, Zhu J, Boyce MS, Beyer H, Stowell L (2005) Scale-dependent summer resource selection by reintroduced elk in Wisconsin, USA. J Wildlife Manage 69:298–310

    Article  Google Scholar 

  • Anderson TM, Hopcraft JG, Eby S, Ritchie M, Grace JB, Olff H (2010) Landscape-scale analyses suggest both nutrient and antipredator advantages to Serengeti herbivore hotspots. Ecology 5:1519–1529. https://doi.org/10.1007/s10980-005-0467-1

    Article  Google Scholar 

  • Antún M, Baldi R (2020) Choosing what is left: the spatial structure of a wild herbivore population within a livestock-dominated landscape. PeerJ 8:e8945. https://doi.org/10.7717/peerj.8945

    Article  PubMed  PubMed Central  Google Scholar 

  • Balmford A, Rosser AM, Albon SD (1992) Correlates of female choice in resource-defending antelope. Behav Ecol Sociobiol 31:107–114. https://doi.org/10.1007/BF00166343

    Article  Google Scholar 

  • Bank MS, Franklin WL (1998) Puma (Puma concolor patagonica) feeding observations and attacks on guanacos (Lama guanicoe). Mammalia 62:599–605

    Google Scholar 

  • Bank MS, Sarno RJ, Franklin WL (2003) Spatial distribution of guanaco mating sites in southern Chile: conservation implications. Biol Conserv 112:427–434. https://doi.org/10.1016/S0006-3207(02)00342-7

    Article  Google Scholar 

  • Bjørneraas K, Herfindal I, Solberg EJ, Sæther BE, van Moorter B, Rolandsen CM (2012) Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore. Oecologia 168:231–243. https://doi.org/10.1007/s00442-011-2072-3

    Article  PubMed  Google Scholar 

  • Bolgeri MJ (2016) Caracterización de movimientos migratorios en guanacos (Lama guanicoe) y patrones de depredación por pumas (Puma concolor) en la Payunia, Mendoza. PhD Thesis, Universidad Nacional del Comahue

  • Bolgeri MJ, Novaro AJ (2015) Variación espacial en la depredación por puma (Puma concolor) sobre guanacos (Lama guanicoe) en la Payunia, Mendoza, Argentina. Mastozool Neotrop 22:255–264

    Google Scholar 

  • Bowyer RT, McCullough DR, Rachlow JL, Ciuti S, Whiting JC (2020) Evolution of ungulate mating systems: integrating social and environmental factors. Ecol Evol 10:5160–5178. https://doi.org/10.1002/ece3.6246

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyce MS, Mao JS, Merrill EH, Fortin D, Turner MG, Fryxell J, Turchin P (2003) Scale and heterogeneity in habitat selection by elk in Yellowstone National Park Scale. Écoscience 10:421–431

    Article  Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling. Oxford University Press, Oxford

    Google Scholar 

  • Buckland ST, Rexstad EA, Marques TA, Oedekoven CS (2015) Distance sampling: methods and applications. Springer, London

    Book  Google Scholar 

  • Burnham K, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach. Springer, New York

  • Candia R, Puig S, Dalmasso A, Videla F, Martínez Carretero E (1993) Diseño del Plan de Manejo para la reserva provincial La Payunia (Malargüe, Mendoza). Multequina 2:5–87

    Google Scholar 

  • Carmanchahi PD, Panebianco A, Leggieri L et al (2019) Lama guanicoe. In: SAyDS–SAREM (ed) Categorización 2019 de los mamíferos de Argentina según su riesgo de extinción. Lista Roja de los mamíferos de Argentina. SAREM, Versión digital, http://cma.sarem.org.ar

  • Conradt L, Clutton H, Thomson D (1999) Habitat segregation in ungulates: are males forced into suboptimal foraging habitats through indirect competition by females ? Oecologia 119:367–377

    Article  CAS  PubMed  Google Scholar 

  • Corlatti L, Bassano B, Valencak TG, Lovari S (2013) Foraging strategies associated with alternative reproductive tactics in a large mammal. J Zool 291:111–118. https://doi.org/10.1111/jzo.12049

    Article  Google Scholar 

  • Corlatti L, Cotza A, Nelli L (2021) Linking alternative reproductive tactics and habitat selection in Northern chamois. Ecol Evol 11:7057–7068. https://doi.org/10.1002/ece3.7554

    Article  PubMed  PubMed Central  Google Scholar 

  • Creech TG, Epps CW, Monello RJ, Wehausen JD (2016) Predicting diet quality and genetic diversity of a desert-adapted ungulate with NDVI. J Arid Environ 127:160–170. https://doi.org/10.1016/j.jaridenv.2015.11.011

    Article  Google Scholar 

  • Creel S, Schuette P, Christianson D (2014) Effects of predation risk on group size, vigilance, and foraging behavior in an African ungulate community. Behav Ecol 25:773–784

    Article  Google Scholar 

  • Creel S, Winnie JJ, Maxwell B, Hamlin K, Creel M (2005) Elk alter habitat selection as an antipredator response to wolves. Ecology 86:3387–3397

    Article  Google Scholar 

  • Cristol D (1995) Early arrival, initiation of nesting, and social status: an experimental study of breeding female red-winged black- birds. Behav Ecol 6:87–93

    Article  Google Scholar 

  • Dodson G (1997) Resource defense mating system in antlered flies Phytalmia spp. Ann Entomol Soc Am 90:496–504

    Article  Google Scholar 

  • Duffy J, Pettorelli N (2012) Exploring the relationship between NDVI and African elephant population density in protected areas. Afr J Ecol 50:455–463

    Article  Google Scholar 

  • Emlen ST, Oring LW (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197:215–223. https://doi.org/10.1126/science.327542

    Article  CAS  PubMed  Google Scholar 

  • Ferguson SH (2002) The effects of productivity and seasonality on life history: comparing age at maturity among moose (Alces alces) populations. Glob Ecol Biogeogr 11:303–312

    Article  Google Scholar 

  • Flores CE, Bellis LM, Adrián S (2020) Modelling the abundance and productivity distribution to understand the habitat–species relationship: the guanaco (Lama guanicoe) case study. Wildlife Res 47:448. https://doi.org/10.1071/WR19114

    Article  Google Scholar 

  • Flores CE, Deferrari G, Collado L, Escobar J, Schiavini A (2018) Spatial abundance models and seasonal distribution for guanaco (Lama guanicoe) in central Tierra del Fuego. Argentina Plos ONE 13:e0197814. https://doi.org/10.1371/journal.pone.0197814

    Article  CAS  PubMed  Google Scholar 

  • Franklin WL (1978) Socioecology of the vicuña. PhD thesis, Utah State University

  • Franklin WL (1983) Contrasting socioecologies of South America’s wild camelids: the vicuña and the guanaco. In: Eisenberg JF, Kleiman DG (eds) Advances in the study of mammalian behavior. Special Publication No. 7 of the American Society of Mammalogists, pp 573–629

  • Franklin WL (2011) Family Camelidae (Camels). In: Wilson D, Mittermeier R (eds) Handbook of the mammals of the world - Vol 2 - Hoofed Mammals. Lynx Edicions, Barcelona, pp 206–246

  • Franklin WL, Johnson WE, Sarno RJ, Iriarte JA (1999) Ecology of the Patagonia puma Felis concolor patagonica in southern Chile. Biol Conserv 90:33–40. https://doi.org/10.1016/S0006-3207(99)00008-7

    Article  Google Scholar 

  • Fritz MA (1985) Population dynamics and harvestability of the Patagonian guanaco. MSc Thesis, Iowa State University, Ames, IA

  • Fryxell JM (1991) Forage quality and aggregation by large herbivores. Am Nat 138:478–498

    Article  Google Scholar 

  • Fryxell JM, Wilmshurst JF, Sinclair ARE (2004) Predictive models of movement by Serengeti grazers. Ecology 85:2429–2435. https://doi.org/10.1890/04-0147

    Article  Google Scholar 

  • Gandiwa E (2013) Top-down and bottom-up control of large herbivore populations: a review of natural and human-induced influences. Trop Conserv Sci 6:493–505. https://doi.org/10.1177/194008291300600404

    Article  Google Scholar 

  • Gelin ML, Branch LC, Thornton DH, Novaro AJ, Gould MJ, Caragiulo A (2017) Response of pumas (Puma concolor) to migration of their primary prey in Patagonia. PLoS ONE 12:e0188877. https://doi.org/10.1371/journal.pone.0188877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Article  Google Scholar 

  • Halliday TR (1983) The study of mate choice. In: Bateson P (ed) Mate choice. Cambridge University Press, Cambridge, UK, pp 3–32

  • Hedley SL, Buckland ST (2004) Spatial models for line transect sampling. J Agric Biol Envir S 9:181–199. https://doi.org/10.1198/1085711043578

    Article  Google Scholar 

  • Hopcraft JGC, Olff H, Sinclair ARE (2010) Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends Ecol Evol 25:119–128. https://doi.org/10.1016/j.tree.2009.08.001

    Article  PubMed  Google Scholar 

  • Iranzo EC, Wittmer HU, Traba J, Acebes P, Mata C, Malo JE (2018) Predator occurrence and perceived predation risk determine grouping behavior in guanaco (Lama guanicoe). Ethology 124:281–289. https://doi.org/10.1111/eth.12727

    Article  Google Scholar 

  • Jarman PJ (1974) The social organisation of antelope in relation to their ecology. Behaviour 48:215–267

    Article  Google Scholar 

  • Johnson CJ, Boyce MS, Mulders R, Gunn A, Gau RJ, Cluff HD, Case RL (2004) Quantifying patch distribution at multiple spatial scales: applications to wildlife-habitat models. Landscape Ecol 2004:869–882

    Article  Google Scholar 

  • Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65–71

    Article  Google Scholar 

  • Jurgensen T (1985) Seasonal territoriality in a migratory guanaco population. MSc Thesis, Iowa State University

  • Kie JG, Bowyer T (1999) Sexual segregation in white-tailed deer: density-dependent changes in use of space, habitat selection and dietary niche. J Mammal 80:1004–1020

    Article  Google Scholar 

  • Kittle AM, Fryxell JM, Desy GE, Hamr J (2008) The scale-dependent impact of wolf predation risk on resource selection by three sympatric ungulates. Oecologia 157:163–175. https://doi.org/10.1007/s00442-008-1051-9

    Article  PubMed  Google Scholar 

  • Lindström K, Seppa T (1996) The environmental potential for polygyny and sexual selection in the sand goby, Pomatoschistus minutus. Proc R Soc Lond B 263:1319–1323

    Article  Google Scholar 

  • Main MB (2008) Reconciling competing ecological explanations for sexual segregation in ungulates. Ecology 89:693–704

    Article  PubMed  Google Scholar 

  • Makin DF, Chamaillé-Jammes S, Shrader AM (2017) Herbivores employ a suite of antipredator behaviours to minimize risk from ambush and cursorial predators. Anim Behav 127:225–231. https://doi.org/10.1016/j.anbehav.2017.03.024

    Article  Google Scholar 

  • Marino A, Baldi R (2008) Vigilance patterns of territorial guanacos (Lama guanicoe): The role of reproductive interests and predation risk. Ethology 114:413–423. https://doi.org/10.1111/j.1439-0310.2008.01485_1.x

    Article  Google Scholar 

  • Marino A, Rodríguez V (2018) On resource defense and sustainable grazing: forage use by territorial and non-territorial guanaco groups. J Arid Environ 152:87–90. https://doi.org/10.1016/j.jaridenv.2018.01.014

    Article  Google Scholar 

  • Marino A, Rodríguez V, Pazos G (2016) Resource-defense polygyny and self-limitation of population density in free-ranging guanacos. Behav Ecol 27:757–765. https://doi.org/10.1093/beheco/arv207

    Article  Google Scholar 

  • Marra G, Wood SN (2011) Practical variable selection for generalized additive models. Comput Stat Data an 55:2372–2387. https://doi.org/10.1016/j.csda.2011.02.004

    Article  Google Scholar 

  • Martínez Carretero E (2004) La Provincia Fitogeográfica de la Payunia. Bol Soc Argent Bot 39:195–226

    Google Scholar 

  • Mech LD (1977) Wolf-pack buffer zones as prey reservoirs. Science 198:320–321

    Article  CAS  PubMed  Google Scholar 

  • Miller DL (2020) Distance sampling detection function and abundance estimation, https://github.com/DistanceDevelopment/Distance/

  • Miller DL, Burt ML, Rexstad EA, Thomas L (2013) Spatial models for distance sampling data: recent developments and future directions. Methods Ecol Evol 4:1001–1010. https://doi.org/10.1111/2041-210X.12105

    Article  Google Scholar 

  • Miller DL, Rexstad E, Burt L, Bravington MV, Hedley S (2020) dsm: density surface modelling of distance sampling data, http://github.com/DistanceDevelopment/dsm

  • Moen R, Pastor J, Cohen Y (1997) A spatially explicit model of moose foraging and energetics. Ecology 78:505–521. https://doi.org/10.1890/0012-9658(1997)078[0505:asemom]2.0.co;2

    Article  Google Scholar 

  • Mohr Bell D, Siebert A (2008) Monitoreo de la sequía en la Provincia de Chubut. Área Planificación Territorial, Laboratorio de Percepción Remota y SIG, CIEFAP, Esquel

  • Mueller T, Olson KA, Fuller TK, Schaller GB, Murray MG, Leimgruber P (2008) In search of forage: predicting dynamic habitats of Mongolian gazelles using satellite-based estimates of vegetation productivity. J Appl Ecol 45:649–658. https://doi.org/10.1111/j.1365-2664.2007.01371.x

    Article  Google Scholar 

  • Nelson ME, Mech LD (1981) Deer social organization and wolf predation in northeastern Minnesota. Wildl Monogr 77:1–53

    Google Scholar 

  • Nixon CM, Hansen LP, Brewer PA, Chelsvig JE (1991) Ecology of white-tailed deer in an intensively farmed region of Illinois. Wildlife Monogr 118:1–77

    Google Scholar 

  • Ortega IM (1985) Social organization and ecology of a migratory guanaco population in southern Patagonia. Iowa State University, Ames, IA

    Google Scholar 

  • Ortega IM, Franklin WL (1995) Social organization, distribution and movements of a migratory guanaco population in the Chilean Patagonia. Rev Chil Hist Nat 68:489–500

    Google Scholar 

  • Owen-Smith N (1977) On territoriality in ungulates and an evolutionary model. Q Rev Biol 52:1–38

    Article  Google Scholar 

  • Palmer MS, Fieberg J, Swanson A, Kosmala M, Packer C (2017) A ‘dynamic’ landscape of fear: prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol Lett 20:1364–1373

    Article  CAS  PubMed  Google Scholar 

  • Panebianco A, Gregorio PF, Ovejero R, Marozzi A, Leggeri LR, Taraborelli PA, Carmanchahi PD (2020) Reproductive flexibility in South American camelids: first records of alternative mating tactics in wild guanacos (Lama guanicoe). Mastozool Neotrop 27:200–205

    Article  Google Scholar 

  • Panebianco A, Gregorio PF, Ovejero R, Marozzi A, Ruiz Blanco M, Leggieri LR, Taraborelli PA, Carmanchahi PD (2021) Male aggressiveness in a polygynous ungulate varies with social and ecological context. Ethology 127:68–82. https://doi.org/10.1111/eth.13100

    Article  Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510. https://doi.org/10.1016/J.TREE.2005.05.011

    Article  PubMed  Google Scholar 

  • Puig S, Videla F, Cona MI (1997) Diet and abundance of the guanaco (Lama guanicoe, Muller 1776) in four habitats of northern Patagonia, Argentina. J Arid Environ 36:343–357. https://doi.org/10.1006/jare.1996.0186

    Article  Google Scholar 

  • Puig S, Videla F, Cona MI, Monge S (2001) Use of food availability by guanacos (Lama guanicoe) and livestock in Northern Patagonia (Mendoza, Argentina). J Arid Environ 47:291–308

    Article  Google Scholar 

  • Puig S, Videla F, Cona MI, Roig VG (2008) Habitat use by guanacos (Lama guanicoe, Camelidae) in northern Patagonia (Mendoza, Argentina). Stud Neotrop Fauna Environ 43:1–9. https://doi.org/10.1080/01650520701461319

    Article  Google Scholar 

  • Puig S, Videla F, Monge S, Roig V (1996) Seasonal variations in guanaco diet (Lama guanicoe Müller 1776) and food availability in Northern Patagonia, Argentina. J Arid Environ 34:215–224

    Article  Google Scholar 

  • QGIS Development Team (2016) QGIS geographic information system. Open Source Geospatial Foundation Project, http://qgisosgeo.org/

  • R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org

  • Raedeke K (1979) Population dynamics and socioecology of the guanaco (Lama guanicoe) of Magallanes, Chile. PhD Thesis, University of Washington, College of Forest Resources

  • Redfern J, Grant C, Gaylard A, Getz W (2005) Surface water availability and the management of herbivore distributions in an African savanna ecosystem. J Arid Environ 63:406–424

    Article  Google Scholar 

  • Reed BC, Brown JF, VanderZee D, Loveland TR, Merchant JW, Ohlen DO (1994) Measuring phenological variability from satellite imagery. J Veg Sci 5:703–714. https://doi.org/10.2307/3235884

    Article  Google Scholar 

  • Riginos C (2015) Climate and the landscape of fear in an African savanna. J Anim Ecol 84:124–133. https://doi.org/10.1111/1365-2656.12262

    Article  PubMed  Google Scholar 

  • Schroeder NM, González A, Wisdom M, Nielson R, Rowland MM, Novaro AJ (2018) Roads have no effect on guanaco habitat selection at a Patagonian site with limited poaching. Glob Ecol Conserv 14:e00394. https://doi.org/10.1016/j.gecco.2018.e00394

    Article  Google Scholar 

  • Schroeder NM, Matteucci SD, Moreno PG, Gregorio P, Ovejero R, Taraborelli PA, Carmanchahi PD (2014) Spatial and seasonal dynamic of abundance and distribution of guanaco and livestock: insights from using density surface and null models. PLoS ONE 9:e85960. https://doi.org/10.1371/journal.pone.0085960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder NM, Ovejero R, Moreno PG, Gregorio P, Taraborelli PA, Matteucci SD, Carmanchahi PD (2013) Including species interactions in resource selection of guanacos and livestock in Northern Patagonia. J Zool 291:213–225. https://doi.org/10.1111/jzo.12065

    Article  Google Scholar 

  • Senft R, Coughenoer M, Bailey DW, Rittenhouse LR, Sala OE, Swift DM (1987) Large herbivore foraging and ecological hierarchies. Bioscience 37:789–796

    Article  Google Scholar 

  • Shipley B (2016) Cause and correlation in biology: a user’s guide to path analysis, structural equations, and causal inference with R. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Sinclair ARE (2003) Mammal population regulation, keystone processes and ecosystem dynamics. Phil Trans R Soc B 358:1729–1740. https://doi.org/10.1098/rstb.2003.1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinclair ARE, Mduma S, Brashares JS (2003) Patterns of predation in a diverse predator-prey system. Nature 425:288–290. https://doi.org/10.1038/nature01934

    Article  CAS  PubMed  Google Scholar 

  • Smit IPJ (2011) Resources driving landscape-scale distribution patterns of grazers in an African savanna. Ecography 34:67–74. https://doi.org/10.1111/j.1600-0587.2010.06029

    Article  Google Scholar 

  • Stankowich T (2008) Ungulate flight responses to human disturbance: a review and meta-analysis. Biol Conserv 141:2159–2173. https://doi.org/10.1016/j.biocon.2008.06.026

    Article  Google Scholar 

  • Sunquist M, Sunquist F (2002) Wild cats of the world. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Taraborelli P, Gregorio P, Moreno P, Novaro A, Carmanchahi PD (2012) Cooperative vigilance: The guanaco’s (Lama guanicoe) key antipredator mechanism. Behav Process 91:82–89

    Article  Google Scholar 

  • Taraborelli P, Moreno P, Mosca Torres ME (2019) Are there different vigilance strategies between types of social units in Lama guanicoe? Behav Process 167:103914. https://doi.org/10.1016/j.beproc.2019.103914

    Article  Google Scholar 

  • Valeix M, Loveridge AJ, Chamaillé-Jammes S, Davidson Z, Murindagomo F, Fritz H, Macdonald DW (2009) Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use. Ecology 90:23–30. https://doi.org/10.1890/08-0606.1

    Article  CAS  PubMed  Google Scholar 

  • Verner J, Wilson MF (1966) The influence of habitats on mating systems of North American passerine birds. Ecology 47:557–567

    Article  Google Scholar 

  • Wahlstroem LK, Liberg O (1995) Patterns of dispersal and seasonal migration in roe deer (Capreolus capreolus). J Zool 235:455–467

    Article  Google Scholar 

  • Wilson EO (1975) Sociobiology : the new synthesis. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Wilson PE (1982) An analysis of male-male aggression in guanaco male groups. MSc Thesis, Iowa State University, Ames, IA

  • Wood SN (2006) Generalized additive models. An introduction with R. Chapman & Hall, Boca Raton, FL

    Book  Google Scholar 

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J Roy Stat Soc B 73:3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x

    Article  Google Scholar 

  • Wood SN (2017) Generalized additive models. An introduction with R, 2nd edn. Chapman & Hall, Boca Raton, FL

  • Young JK, Franklin WL (2004) Territorial fidelity of male guanacos in the Patagonia of Southern Chile. J Mammal 85:72–78

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank the park rangers of La Payunia Reserve and field assistants for providing logistical support for fieldwork. We also thank Lucila Herbert for her support in checking the English writing style. Finally, we thank the reviewers who provided many stimulating and helpful comments that greatly improved the quality of the manuscript.

Funding

This study was partially funded by IDEA WILD, ANPCyT (PICT-1305/PICT-0304), CONICET (PIP-11220100100386) and FONDECYT-CONICYT-PROGRAM (No. 3140237).

Author information

Authors and Affiliations

Authors

Contributions

AP: Conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, writing-original draft and writing-review and editing. PFG: Data curation, methodology, investigation and writing-review and editing. NMS: Data curation, methodology, formal analysis and writing-review and editing. AM: Data curation, investigation and writing-review and editing. RO: Funding acquisition, Visualization and Writing-review and editing. LH: Methodology, formal analysis and writing–review and editing. LRL: Visualization and writing-review and editing. FP: Visualization and writing-review and editing. PAT: Conceptualization, funding acquisition, supervision and writing-review and editing. PDC: Conceptualization, investigation, funding acquisition, supervision and writing-review and editing.

Corresponding author

Correspondence to A. Panebianco.

Ethics declarations

Ethics approval

Ethical approval from national and/or institutional committees for the use of animals was not required for this study. The Directorate for Renewable Natural Resources of Mendoza Province (Resolution n°: 893/2013 and 1231/2016) provided the necessary permission to work in La Payunia Reserve. This study was conducted with wild free-ranging animals and was completely observational. All applicable international, national and/or institutional guidelines for the ethical use of animals were followed.

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by K. Eva Ruckstuhl.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1040 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panebianco, A., Gregorio, P.F., Schroeder, N.M. et al. Where are the males? The influence of bottom-up and top-down factors and sociability on the spatial distribution of a territorial ungulate. Behav Ecol Sociobiol 76, 10 (2022). https://doi.org/10.1007/s00265-021-03104-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-021-03104-2

Keywords

Navigation