Skip to main content
Log in

Does interspecific competition influence relationships between heterozygosity and fitness-related behaviors in juvenile Atlantic salmon (Salmo salar)?

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Very few studies have investigated the effect of genetic diversity on the behavioral and phenotypic traits linked to the competitive ability of individuals. In this study, we reared juvenile Atlantic salmon (Salmo salar) alone or with the competitive rainbow trout (Oncorhynchus mykiss) in order to: (1) to assess correlations between heterozygosity and traits related to individual competitive ability [i.e., heterozygosity–fitness correlations (HFCs)] in Atlantic salmon, and (2) to evaluate the effect of the competitive rainbow trout on any such HFCs. We also tested whether a few loci had a disproportionately large effect (i.e., the local effect hypothesis) or, on the contrary, if all loci contributed equally (i.e., the global effect hypothesis) in explaining the observed HFCs. We found significant HFCs for phenotypic traits related to the competitive ability of juvenile Atlantic salmon, i.e., the growth rate and the distance to the feeding source. Some HFCs were nonlinear, suggesting that individuals with intermediate levels of heterozygosity were favored. In addition, we found that the competition exerted by rainbow trout only weakly modified these HFCs as the relationships were highly consistent across treatments. We demonstrated that the local-effect hypothesis best explained both linear and nonlinear HFCs. Overall, our results illustrated the importance of genetic diversity in explaining the behavioral variability observed within populations. Moreover, we provide evidence that, even if a competitive species can have strong ecological effects, the relationships between genetic diversity and fitness-related traits in juvenile Atlantic salmon were not influenced by such effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aljanabi S, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693

    Article  PubMed  CAS  Google Scholar 

  • Amos W, Wilmer JW, Fullard K, Burg TM, Croxall JP, Bloch D, Coulson T (2001) The influence of parental relatedness on reproductive success. Proc Roy Soc B-Biol Sci 268:2021–2027

    Article  CAS  Google Scholar 

  • Aparicio JM, Cordero PJ, Veiga JP (2001) A test of the hypothesis of mate choice based on heterozygosity in the spotless starling. Anim Behav 62:1001–1006

    Article  Google Scholar 

  • Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations. Mol Ecol 13:3021–3031

    Article  PubMed  CAS  Google Scholar 

  • Bensch S, Andrén H, Hansson B, Pedersen HC, Sand HK, Sejberg D, Wabakken P, Akesson M, Liberg O (2006) Selection for heterozygosity gives hope to a wild population of inbred wolves. PLoS ONE 1:e72

    Article  PubMed  Google Scholar 

  • Blanchet S, Loot G, Bernatchez L, Dodson JJ (2007) The disruption of dominance hierarchies by a non-native species: an individual-based analysis. Oecologia 152:569–581

    Article  PubMed  CAS  Google Scholar 

  • Boake CRB, Arnold SJ, Breden F, Meffert LM, Ritchie MG, Taylor BJ, Wolf JB, Moore AJ (2002) Genetic tools for studying adaptation and the evolution of behavior. Am Nat 160:S143–S159

    Article  PubMed  Google Scholar 

  • Bolnick DI, Svanback R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28

    Article  PubMed  Google Scholar 

  • Coltman DW, Slate J (2003) Microsatellite measures of inbreeding: a meta-analysis. Evolution 57:971–983

    PubMed  CAS  Google Scholar 

  • Coltman DW, Bowen WD, Wright JM (1998) Birth weight and neonatal survival of harbour seal pups ape positively correlated with genetic variation measured by microsatellites. Proc Roy Soc B-Biol Sci 265:803–809

    Article  CAS  Google Scholar 

  • Coltman DW, Pilkington JG, Smith JA, Pemberton JM (1999) Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53:1259–1267

    Article  Google Scholar 

  • Connell JH (1980) Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35:131–138

    Article  Google Scholar 

  • Côté SD, Festa-Bianchet M (2001) Birthdate, mass and survival in mountain goat kids: effects of maternal characteristics and forage quality. Oecologia 127:230–238

    Article  Google Scholar 

  • David P (1997) Modelling the genetic basis of heterosis: tests of alternative hypotheses. Evolution 51:1049–1057

    Article  Google Scholar 

  • David P (1998) Heterozygosity-fitness correlations: new perspectives on old problems. Heredity 80:531–537

    Article  PubMed  Google Scholar 

  • DeSalle R, Amato G (2004) The expansion of conservation genetics. Nat Rev Gen 5:702–712

    Article  CAS  Google Scholar 

  • Faraway JJ (2006) Extending the linear model with R, 1st edn. Chapman & Hall/CR, Boca Raton, FL

    Google Scholar 

  • Gammell MP, De Vries H, Jennings DJ, Carlin CM, Hayden TJ (2003) David’s score: a more appropriate dominance ranking method than Clutton-Brock et al.’s index. Anim Behav 66:601–605

    Article  Google Scholar 

  • Gurevitch J, Morrow LL, Wallace A, Walsh JS (1992) A meta-analysis of competition in field experiments. Am Nat 140:539–572

    Article  Google Scholar 

  • Hansson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11:2467–2474

    Article  PubMed  Google Scholar 

  • Hoffmann HA, Benson ME, Fernald RD (1999) Social status regulates growth rate: consequence for life-history strategies. P Natl Acad Sci USA 96:14171–14176

    Article  Google Scholar 

  • Hoffman JI, Forcada J, Trathan PN, Amos W (2007) Female fur seals show active choice for males that are heterozygous and unrelated. Nature 445:912–914

    Article  PubMed  CAS  Google Scholar 

  • Höjesjö J, Johnsson JI, Bohlin T (2002) Can laboratory studies on dominance predict fitness of young brown trout in the wild. Behav Ecol Sociobiol 52:102–108

    Article  Google Scholar 

  • Houle D (1994) Adaptive distance and the genetic-basis of heterosis. Evolution 48:1410–1417

    Article  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 117:230–241

    Article  Google Scholar 

  • Klemetsen A, Amundsen PA, Dempson JB, Jonsson B, Jonsson N, Mortensen E (2003) Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Artic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Freshw Fish 12:1–59

    Article  Google Scholar 

  • Kruuk LEB, Sheldon BC, Merila J (2002) Severe inbreeding depression in collared flycatchers (Ficedula albicollis). Proc Roy Soc B-Biol Sci 269:1581–1589

    Article  Google Scholar 

  • Lèsbarreres D, Primmer CR, Laurila A, Merila J (2005) Environmental and population dependency of genetic variability-fitness correlations in Rana temporaria. Mol Ecol 14:311–323

    Article  PubMed  Google Scholar 

  • Lieutenant-Gosselin M, Bernatchez L (2006) Local heterozygosity-fitness correlations with global positive effects on fitness in threespine stickleback. Evolution 60:1658–1668

    PubMed  CAS  Google Scholar 

  • MacDougall-Shackleton EA, Derryberry EP, Foufopoulos J, Dobson AP, Hahn TP (2005) Parasite-mediated heterozygote advantage in an outbred songbird population. Biol Lett 1:105–107

    Article  PubMed  Google Scholar 

  • Markert JA, Grant PR, Grant BR, Keller LF, Coombs JL, Petren K (2004) Neutral locus heterozygosity, inbreeding, and survival in Darwin’s ground finches (Geospiza fortis and G. scandens). Heredity 92:306–315

    Article  PubMed  CAS  Google Scholar 

  • Meffert LM, Hicks SK, Regan JL (2002) Nonadditive genetic effects in animal behavior. Am Nat 160:S198–S213

    Article  PubMed  Google Scholar 

  • Nakano S (1995) Individual differences in resource use, growth and emigration under the influence of a dominance hierarchy in fluvial red spotted Masu salmon in a natural habitat. J Anim Ecol 64:75–84

    Article  Google Scholar 

  • Neff BD (2004) Stabilizing selection on genomic divergence in a wild fish population. P Natl Acad Sci USA 101:2381–2385

    Article  CAS  Google Scholar 

  • Neff BD, Pitcher TE (2005) Genetic quality and sexual selection: an integrated framework for good genes and compatible genes. Mol Ecol 14:19–38

    Article  PubMed  CAS  Google Scholar 

  • Ortego J, Aparicio JM, Calabuig G, Cordero PJ (2007) Risk of ectoparasitism and genetic diversity in a wild lesser kestrel population. Mol Ecol 16:3712–3720

    Article  PubMed  CAS  Google Scholar 

  • Owens IPF (2006) Where is behavioural ecology going. Trends Ecology Evol 21:356–361

    Article  Google Scholar 

  • Pujolar JM, Maes GE, Vancoillie C, Volckaert FAM (2005) Growth rate correlates to individual heterozygosity in the European eel, Anguilla anguilla L. Evolution 59:189–199

    PubMed  CAS  Google Scholar 

  • Pujolar JM, Maes GE, Vancoillie C, Volckaert FAM (2006) Environmental stress and life-stage dependence on the detection of heterozygosity–fitness correlations in the European eel, Anguilla anguilla. Genome 49:1428–1437

    Article  PubMed  CAS  Google Scholar 

  • Reid DP, Szanto A, Glebe B, Danzmann RG, Ferguson MM (2005) QTL for body weight and condition factor in Atlantic salmon (Salmo salar): comparative analysis with rainbow trout (Oncorhynchus mykiss) and Arctic charr (Salvelinus fontinalis). Heredity 94:166–172

    Article  PubMed  CAS  Google Scholar 

  • Rijks JM, Hoffman JI, Kuiken T, Osterhaus ADME, Amos W (2008) Heterozygosity and lungworm burden in harbour seals (Phoca vitulina). Heredity 100:587–593

    Article  PubMed  CAS  Google Scholar 

  • Roberge C, Blanchet S, Dodson JJ, Guderley H, Bernatchez L (2008) Disturbance of social hierarchy by an invasive species: a gene transcription study. PloS ONE 3:e2408

    Article  PubMed  Google Scholar 

  • Sih A, Bell AM, Johnson JC, Ziemba RE (2004) Behavioral syndromes: an integrative overview. Quart Rev Biol 79:241–277

    Article  PubMed  Google Scholar 

  • Slate J, David P, Dodds KG, Veenvliet BA, Glass BC, Broad TE, McEwan JC (2004) Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255–265

    Article  PubMed  CAS  Google Scholar 

  • Slate J, Kruuk LEB, Marshall TC, Pemberton JM, Clutton-Brock TH (2000) Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc Roy Soc B-Biol Sci 267:1657–1662

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W. H. Freeman, New York

    Google Scholar 

  • Thelen GC, Allendorf FW (2001) Heterozygosity–fitness correlations in rainbow trout: effects of allozyme loci or associative overdominance. Evolution 55:1180–1187

    PubMed  CAS  Google Scholar 

  • Tiira K, Laurila A, Peuhkuri N, Piironen J, Ranta E, Primmer CR (2003) Aggressiveness is associated with genetic diversity in landlocked salmon (Salmo salar). Mol Ecol 12:2399–2407

    Article  PubMed  Google Scholar 

  • Tiira K, Laurila A, Enberg K, Piironen J, Aikio S, Ranta E, Primmer CR (2006) Do dominants have higher heterozygosity? Social status and genetic variation in brown trout, Salmo trutta. Behav Ecol Sociobiol 59:657–665

    Article  Google Scholar 

  • Välimäki K, Hinten G, Hanski I (2007) Inbreeding and competitive ability in the common shrew (Sorex araneus). Behav Ecol Sociobiol 61:997–1005

    Article  Google Scholar 

  • Vasemagi A, Nilsson J, Primmer CR (2005) Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol Biol Evol 22:1067–1076

    Article  PubMed  Google Scholar 

  • Vollestad LA, Quinn TP (2003) Trade-off between growth rate and aggression in juvenile coho salmon, Oncorhynchus kisutch. Anim Behav 66:561–568

    Article  Google Scholar 

  • Volpe JP, Anholt BR, Glickman BW (2001) Competition among juvenile Atlantic salmon (Salmo salar) and steelhead (Oncorhynchus mykiss) : relevance to invasion in British Columbia. Can J Fish Aquat Sci 58:197–207

    Article  Google Scholar 

  • Zouros E, Singh SM, Miles HE (1980) Growth rate in oysters-an overdominant phenotype and its possible explanations. Evolution 34:856–867

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the LARSA team (Québec, Canada) for rearing fish. We thank V. Albert, G. Côté and L. Papillon for advices during genotyping. We sincerely thank M. Lieutenant-Gosselin, G. Loot, and anonymous referees for valuables comments on previous drafts. This research was financially supported by a Natural Sciences and Engineering Research Council of Canada grant (strategic program) to J.J.D. and L.B. The experiments conducted comply with current Canadian laws (license N° 2004-140).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Blanchet or J. J. Dodson.

Additional information

Communicated by C. St. Mary

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchet, S., Bernatchez, L. & Dodson, J.J. Does interspecific competition influence relationships between heterozygosity and fitness-related behaviors in juvenile Atlantic salmon (Salmo salar)?. Behav Ecol Sociobiol 63, 605–615 (2009). https://doi.org/10.1007/s00265-008-0695-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-008-0695-0

Keywords

Navigation