Skip to main content
Log in

Shape and efficiency of wood ant foraging networks

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

We measured the shape of the foraging trail networks of 11 colonies of the wood ant Formica aquilonia (Formica rufa group). We characterized these networks in terms of their degree of branching and the angles between branches, as well as in terms of their efficiency. The measured networks were compared with idealized model networks built to optimize one of two components of efficiency, total length (i.e., total amount of trail) and route factor (i.e., average distance between nest and foraging site). The analysis shows that the networks built by the ants obtain a compromise between the two modes of efficiency. These results are largely independent of the size of the network or colony size. The ants’ efficiency is comparable to that of networks built by humans but achieved without the benefit of centralized control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acosta FJ, Lopez F, Serrano JM (1993) Branching angles of ant trunk trails as an optimization cue. J Theor Biol 160:297–310

    Article  ADS  Google Scholar 

  • Anderson C, McShea DW (2001) Intermediate-level parts in insect societies: adaptive structures that ants build away from the nest. Insectes Soc 48:291–301

    Article  Google Scholar 

  • Azcarate FM, Peco B (2003) Spatial patterns of seed predation by harvester ants (Messor Forel) in Mediterranean grassland and scrubland. Insectes Soc 50:120–126. doi:10.1007/s00040-003-0635-y

    Article  Google Scholar 

  • Bebber DP, Hynes J, Darrah PR, Boddy L, Fricker MD (2007) Biological solutions to transport network design. Proc R Soc B 274:2307–2315. doi:10.1098/rspb.2007.0459

    Article  PubMed  PubMed Central  Google Scholar 

  • Bollobas B (1998) Modern graph theory. Springer, Berlin

    Book  Google Scholar 

  • Bonabeau E, Dorigo M, Theraulaz G (2000) Inspiration for optimization from social insect behaviour. Nature 406:39–42. doi:10.1038/35017500

    Article  ADS  CAS  PubMed  Google Scholar 

  • Brian MV (1955) Food collection by a Scottish ant community. J Anim Ecol 24:336–352

    Article  Google Scholar 

  • Buhl C, Solé RV, Valverde S, Deneubourg JL, Theraulaz G (2004) Efficiency and robustness in ant networks of galleries. Eur Phys J B 42:123–129. doi:10.1140/epjb/e2004-00364-9

    Article  ADS  CAS  Google Scholar 

  • Buhl C, Gautrais J, Reeves N, Solé RV, Valverde S, Kuntz P, Theraulaz G (2006) Topological patterns in street networks of self-organized urban settlements. Eur Phys J B 49:512–513. doi:10.1140/epjb/e2006-00085-1

    Article  ADS  Google Scholar 

  • Cardillo A, Scellato S, Latora V, Porta S (2006) Structural properties of planar graphs of urban street patterns. Phys Rev E 73:066107. doi:10.1103/PhysRevE.73.066107

    Article  ADS  Google Scholar 

  • Chauvin R (1962) Observations sur les pistes de Formica polyctena. Insectes Soc 9:311–321

    Article  Google Scholar 

  • Cheriton D, Tarjan RE (1976) Finding minimum spanning trees. SIAM J Comput 5:724–742

    Article  MathSciNet  Google Scholar 

  • Deneubourg JL, Goss S (1989) Collective patterns and decision making. Ethol Ecol Evol 1:295–311

    Article  Google Scholar 

  • Detrain C, Tasse O, Versaen M, Pasteels JM (2000) A field assessment of optimal foraging in ants: trail patterns and seed retrieval by the European harvester ant Messor barbarus. Insectes Soc 47:56–62. doi:10.1007/s000400050009

    Article  Google Scholar 

  • Dodds PS, Rothman DH (2000a) Geometry of river networks. I. Scaling, fluctuations, and deviations. Phys Rev E 63:016115. doi:10.1103/PhysRevE.63.016115

    Article  ADS  Google Scholar 

  • Dodds PS, Rothman DH (2000b) Geometry of river networks. II. Distribution of component size and number. Phys Rev E 63:016116. doi:10.1103/PhysRevE.63.016116

    Article  ADS  Google Scholar 

  • Dodds PS, Rothman DH (2000c) Geometry of river networks. III. Characterization of component connectivity. Phys Rev E 63:016117. doi:10.1103/PhysRevE.63.016117

    Article  ADS  Google Scholar 

  • Dorigo M, Stutzle T (2004) Ant colony optimisation. Branford Book, Cambridge

    Book  Google Scholar 

  • Edelstein-Keshet L, Watmough J, Ermentrout GB (1995) Trail following in ants: individual properties determine population behaviour. Behav Ecol Sociobiol 36:119–133. doi:10.1007/BF00170717

    Article  Google Scholar 

  • Elton CS (1932) Territory among wood ants (Formica rufa L.) at Picket Hill. J Anim Ecol 1:69–76

    Article  Google Scholar 

  • Fewell JH (1988) Energetic and time costs of foraging in harvester ants, Pogonomyrmex occidentalis. Behav Ecol Sociobiol 22:401–408

    Article  Google Scholar 

  • Franks NR (1989) Army ants: a collective intelligence. Am Sci 77:139–145

    ADS  Google Scholar 

  • Franks N, Gomez N, Goss S, Deneubourg JL (1991) The blind leading the blind in army ant raid patterns: testing a model of self-organization (Hymenoptera: Formicidae). J Insect Behav 4:583–607. doi:10.1007/BF01048072

    Article  Google Scholar 

  • Ganeshaiah KN, Veena T (1991) Topology of the foraging trails of Leptogenys processionalis—why are they branched? Behav Ecol Sociobiol 29:263–270

    Article  Google Scholar 

  • Garey M, Johnson D (1979) Computers and intractability, a guide to the theory of NP-completeness. Freeman, New York

    Google Scholar 

  • Gastner MT, Newman MEJ (2006) The spatial structure of networks. Eur Phys J B 49:247–252. doi:10.1140/epjb/e2006-00046-8

    Article  ADS  CAS  Google Scholar 

  • Gilbert EN, Pollak OH (1968) Steiner minimal trees. SIAM J Appl Math 16:1–29

    Article  MathSciNet  Google Scholar 

  • Helbing D, Schweitzer F, Keltsch J, Molnar P (1997) Active walker model for the formation of human and animal trail systems. Phys Rev E 56:2527–2539. doi:10.1103/PhysRevE.56.2527

    Article  ADS  CAS  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Bull Geol Soc Am 56:275–370

    Article  Google Scholar 

  • Hölldobler B (1976) Recruitment behavior, home range orientation and territoriality in harvester ants, Pogonomyrmex. Behav Ecol Sociobiol 1:3–44

    Article  Google Scholar 

  • Hölldobler B, Möglich M (1980) The foraging system of Pheidole militicida (Hymenoptera: Formicidae). Insectes Soc 27:237–264. doi:10.1007/BF02223667

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin

    Book  Google Scholar 

  • Jackson DE, Holcombe M, Ratnieks FLW (2004) Knowing which way to go—trail geometry gives polarity to ant foraging networks. Nature 432:907–909. doi:10.1038/nature03105

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kenne M, Dejean A (1999) Spatial distribution, size and density of nests of Myrmicaria opaciventris Emery (Formicidae, Myrmicinae). Insectes Soc 46:179–185. doi:10.1007/s000400050130

    Article  Google Scholar 

  • Kruskal JB (1956) On the shortest spanning subtree of a graph and the travelling salesman problem. Proc Am Math Soc 2:48–50

    Article  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701. doi:10.1103/PhysRevLett.87.198701

    Article  ADS  CAS  PubMed  Google Scholar 

  • Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. Bioscience 51:341–352

    Article  Google Scholar 

  • Lopez F, Acosta FJ, Serrano JM (1994) Guerilla vs phalanx strategies of resource capture: growth and structural plasticity in the trunk trail system of the harvester ant Messor barbarus. J Anim Ecol 63:127–138

    Article  Google Scholar 

  • Moffett MW (1988) Foraging dynamics in the group-hunting myrmicine ant, Pheidologeton diversus. J Insect Behav 1:309–331. doi:10.1007/BF01054528

    Article  Google Scholar 

  • Nakagaki T, Yamada H, Toth A (2000) Maze-solving by an amoeboid organism. Nature 407:470. doi:10.1038/35035159

    Article  ADS  CAS  PubMed  Google Scholar 

  • Nakagaki T, Kobayashi R, Nishiura Y, Ueda T (2004a) Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium. Proc Biol Sci 271:2305–2310. doi:10.1016/j.physa.2006.01.053

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagaki T, Yamada H, Hara M (2004b) Smart network solutions in an amoeboid organism. Biophys Chem 107:1–5. doi:10.1016/S0301-4622(03)00189-3

    Article  CAS  PubMed  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Review 45:167–256. doi:10.1137/S003614450342480

    Article  ADS  MathSciNet  Google Scholar 

  • Pelletier JD, Turcotte DL (2000) Shapes of river networks and leaves: are they statistically similar? Philos Trans R Soc Lond B 355:307–311. doi:10.1098/rstb.2000.0566

    Article  CAS  Google Scholar 

  • Pickles W (1935) Populations, territory and interrelationships of the ants Formica fusca, Acanthomyops niger and Myrmica scabrinodis at Garforth (Yorkshire). J Anim Ecol 4:22–31

    Article  Google Scholar 

  • Pickles W (1936) Populations and territories of the ants, Formica fusca, Acanthomyops flavus and Myrmica ruginodis at Thornhill (Yorks). J Anim Ecol 5:262–270

    Article  Google Scholar 

  • Pickles W (1937) Populations, territories and biomass of ants at Thornhill, Yorkshire, in 1936. J Anim Ecol 6:54–61

    Article  Google Scholar 

  • Pickles W (1938) Populations, territories and biomass of ants at Thornhill, Yorkshire, in 1937. J Anim Ecol 7:370–380

    Article  Google Scholar 

  • Rosengren R, Sundström L (1987) The foraging system of a red wood ant colony (Formica s. str.)—collecting and defending food through an extended phenotype. In: Pasteels JM, Deneubourg JL (eds) From individual to collective behavior in social insects: les Treilles Workshop. Experientia Supplementum, vol. 54. Birkhauser, Basel, pp 117–137

    Google Scholar 

  • Rosengren R, Sundström L (1991) The interaction between red wood ants, Cinerea aphids, and Scots pines. A ghost of mutualism past? In: Huxley CR, Cutler DF (eds) Ant–plant interactions. Oxford University Press, Oxford, pp 80–91

    Chapter  Google Scholar 

  • Schlick-Steiner BC, Steiner FM, Moder K, Bruckner A, Fiedler K, Christian E (2006) Assessing ant assemblages: pitfall trapping versus nest counting (Hymenoptera, Formicidae). Insectes Soc 53:274–281. doi:10.1007/s00040-006-0869-6

    Article  Google Scholar 

  • Schneirla TC (1971) Army ants. A study in social organization. Freeman, San Francisco

    Google Scholar 

  • Schweitzer F, Lao K, Family F (1997) Active random walkers simulate trunk trail formation by ants. Biosystems 41:153–166. doi:10.1016/S0303-2647(96)01670-X

    Article  CAS  PubMed  Google Scholar 

  • Shepherd JD (1982) Trunk trails and the searching strategy of a leaf-cutter ant, Atta colombica. Behav Ecol Sociobiol 11:77–84

    Article  Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38:913–920

    Article  ADS  Google Scholar 

  • Topoff H (1984) Social organization of raiding and emigrations in army ants. Adv Study Behav 14:81–126

    Article  Google Scholar 

  • Warme DM, Winter P, Zacharisen M (1998) Exact algorithms for plane Steiner tree problems: a computational study. Technical Report DIKU-TR-98/11. In. Dept. of Computer Science, University of Copenhagen

  • Vasconcellos HL (1990) Foraging activity of two species of leaf-cutting ants (Atta) in a primary forest of the central Amazon. Insectes Soc 37:131–145

    Article  Google Scholar 

  • Weber NA (1972) The fungus-culturing behavior of ants. Am Zool 12:577–587

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Royal Society, the Human Frontiers Science Program (grant RGP51/2007), and the Australian Research Council. We also thank three anonymous referees for their help and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Buhl.

Additional information

Communicated by M. Beekman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buhl, C., Hicks, K., Miller, E.R. et al. Shape and efficiency of wood ant foraging networks. Behav Ecol Sociobiol 63, 451–460 (2009). https://doi.org/10.1007/s00265-008-0680-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-008-0680-7

Keywords