Skip to main content
Log in

A decreased tibial tuberosity-trochlear groove distance is associated with lateral patellofemoral joint degeneration after implantation of medial fixed-bearing unicompartmental knee arthroplasty — a minimum five year follow-up

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The influence of lateral patellofemoral osteoarthritis (PFOA) in medial unicompartmental knee arthroplasty (UKA) is controversial. Our aim was to identify radiographic factors that may lead to progressive PFOA after implantation of a fixed-bearing medial UKA and their impact on patient-reported outcomes (PROMs).

Methods

A retrospective consecutive cohort of patients undergoing medial UKA with a minimum follow-up of 60 months between September 2011 and January 2017 was identified. All UKAs had a fixed-bearing design with cemented femoral and tibial components. PROMs included documentation of the Oxford Knee Score (OKS). The following radiographic parameters were evaluated on conventional radiographs and computer tomography (CT) scans: patella tilt angle, patella congruence angle, Caton-Deschamps index, medial and lateral patellofemoral degeneration (Kellgren-Lawrence Classification (KL)), mechanical anteroposterior axis, femoral torsion, tibial tuberosity to trochlear groove distance (TTTG), anteroposterior translation of the femoral component. A hierarchical multiple regression analysis and partial Pearson correlation analysis (SPSS) were used to evaluate for predictors of progression of lateral PFOA.

Results

Forty-nine knees allowed PFOA assessment and had an average follow-up of 62 months (range 60–108). Twenty-three patients did not exhibit any progression of lateral PFOA. Twenty-two progressed with 1 stage, whereas four had progressed 2 stages according to the KL classification. TTTG negatively correlated with progressive lateral PFOA (r =  − 0.436, p = 0.01). Progression of lateral PFOA did not correlate with OKS at last follow-up (p = 0.613).

Conclusion

A decreased TTGT correlated with radiographic progression of lateral PFOA after medial fixed-bearing cemented UKA. PFOA however did not influence PROMs at a minimum of five years postoperatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All study associated data is stored on a local storage in the institutional database and is password-protected. These data can be accessed and reused; shall the need arise.

References

  1. Rossi SMP, Sangaletti R, Nesta F et al (2022) A well performing medial fixed bearing UKA with promising survivorship at 15 years. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-022-04562-7

    Article  PubMed  Google Scholar 

  2. Crawford DA, Rutledge-Jukes H, Alexander JS et al (2023) 15-year follow-up of mobile bearing medial unicompartmental knee arthroplasty. J Arthroplasty. https://doi.org/10.1016/j.arth.2023.01.024

    Article  PubMed  Google Scholar 

  3. Berger RA, Nedeff DD, Barden RM, et al (1999) Unicompartmental knee arthroplasty. Clinical experience at 6- to 10-year followup. Clin Orthop Relat Res 50–60

  4. Pandit H, Jenkins C, Gill HS et al (2011) Unnecessary contraindications for mobile-bearing unicompartmental knee replacement. J Bone Jt Surg Br 93:622–628. https://doi.org/10.1302/0301-620x.93b5.26214

    Article  CAS  Google Scholar 

  5. Ernstbrunner L, Imam MA, Andronic O et al (2018) Lateral unicompartmental knee replacement: a systematic review of reasons for failure. Int Orthop 42. https://doi.org/10.1007/s00264-017-3662-4

  6. Beard DJ, Pandit H, Gill HS et al (2007) The influence of the presence and severity of pre-existing patellofemoral degenerative changes on the outcome of the Oxford medial unicompartmental knee replacement. J Bone Jt Surg Br 89:1597–1601. https://doi.org/10.1302/0301-620x.89b12.19259

    Article  CAS  Google Scholar 

  7. Beard DJ, Pandit H, Ostlere S et al (2007) Pre-operative clinical and radiological assessment of the patellofemoral joint in unicompartmental knee replacement and its influence on outcome. J Bone Jt Surg Br 89:1602–1607. https://doi.org/10.1302/0301-620x.89b12.19260

    Article  CAS  Google Scholar 

  8. Song EK, Park JK, Park CH et al (2016) No difference in anterior knee pain after medial unicompartmental knee arthroplasty in patients with or without patellofemoral osteoarthritis. Knee Surg Sport Traumatol Arthrosc 24:208–213. https://doi.org/10.1007/s00167-014-3367-9

    Article  Google Scholar 

  9. Crossley KM, Hinman RS (2011) The patellofemoral joint: the forgotten joint in knee osteoarthritis. Osteoarthr Cartil 19:765–767. https://doi.org/10.1016/j.joca.2011.05.005

    Article  CAS  Google Scholar 

  10. Duncan R, Peat G, Thomas E et al (2008) How do pain and function vary with compartmental distribution and severity of radiographic knee osteoarthritis? Rheumatol 47:1704–1707. https://doi.org/10.1093/rheumatology/ken339

    Article  CAS  Google Scholar 

  11. Hernigou P, Deschamps G (2002) Patellar impingement following unicompartmental arthroplasty. J Bone Jt Surg Am 84:1132–1137. https://doi.org/10.2106/00004623-200207000-00006

    Article  CAS  Google Scholar 

  12. Konan S, Haddad FS (2016) Does location of patellofemoral chondral lesion influence outcome after Oxford medial compartmental knee arthroplasty? Bone Jt J 98-b:11–15. https://doi.org/10.1302/0301-620x.98b10.Bjj-2016-0403.R1

    Article  CAS  Google Scholar 

  13. Stern SH, Becker MW, Insall JN (1993) Unicondylar knee arthroplasty. An evaluation of selection criteria. Clin Orthop Relat Res 143–148

  14. Wilson HA, Middleton R, Abram SGF et al (2019) Patient relevant outcomes of unicompartmental versus total knee replacement: systematic review and meta-analysis. BMJ 364:l352. https://doi.org/10.1136/bmj.l352

    Article  PubMed  PubMed Central  Google Scholar 

  15. Siman H, Kamath AF, Carrillo N et al (2017) Unicompartmental knee arthroplasty vs total knee arthroplasty for medial compartment arthritis in patients older than 75 years: comparable reoperation, revision, and complication rates. J Arthroplast 32:1792–1797. https://doi.org/10.1016/j.arth.2017.01.020

    Article  Google Scholar 

  16. Flury A, Hoch A, Andronic O et al (2021) Increased femoral antetorsion correlates with higher degrees of lateral retropatellar cartilage degeneration, further accentuated in genu valgum. Knee Surg Sport Traumatol Arthrosc 29:1760–1768. https://doi.org/10.1007/s00167-020-06223-x

    Article  CAS  Google Scholar 

  17. Cahue S, Dunlop D, Hayes K et al (2004) Varus-valgus alignment in the progression of patellofemoral osteoarthritis. Arthritis Rheum 50:2184–2190. https://doi.org/10.1002/art.20348

    Article  PubMed  Google Scholar 

  18. Macri JJ, Khan KK, Crossley KMES (2016) Is tibiofemoral or patellofemoral alignment or trochlear morphology associated with patellofemoral osteoarthritis? A Systematic Review. Arthritis Care Res 68:1453–1470. https://doi.org/10.1002/acr.22842

    Article  Google Scholar 

  19. Kaiser P, Loth F, Attal R et al (2020) Static patella tilt and axial engagement in knee extension are mainly influenced by knee torsion, the tibial tubercle-trochlear groove distance (TTTG), and trochlear dysplasia but not by femoral or tibial torsion. Knee Surg Sport Traumatol Arthrosc 28:952–959. https://doi.org/10.1007/s00167-019-05588-y

    Article  CAS  Google Scholar 

  20. Cicuttini F, Wluka A, Wang Y, Stuckey S (2002) The determinants of change in patella cartilage volume in osteoarthritic knees. J Rheumatol 29:2615–2619

    PubMed  Google Scholar 

  21. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502. https://doi.org/10.1136/ard.16.4.494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Panni AS, Vasso M, Cerciello S, Felici A (2012) Unicompartmental knee replacement provides early clinical and functional improvement stabilizing over time. Knee Surg Sports Traumatol Arthrosc 20:579–585. https://doi.org/10.1007/s00167-011-1613-y

    Article  PubMed  Google Scholar 

  23. Vasso M, Antoniadis A, Helmy N (2018) Update on unicompartmental knee arthroplasty: current indications and failure modes. EFORT open Rev 3:442–448. https://doi.org/10.1302/2058-5241.3.170060

    Article  PubMed Central  Google Scholar 

  24. Koch PP, Müller D, Pisan M, Fucentese SF (2013) Radiographic accuracy in TKA with a CT-based patient-specific cutting block technique. Knee Surgery, Sport Traumatol Arthrosc 21:2200–2205. https://doi.org/10.1007/s00167-013-2625-6

    Article  CAS  Google Scholar 

  25. Houdek MT, Wagner ER, Wyles CC et al (2016) All-polyethylene tibial components: an analysis of long-term outcomes and infection. J Arthroplasty 31:1476–1482. https://doi.org/10.1016/j.arth.2015.12.048

    Article  PubMed  Google Scholar 

  26. Archibeck MJ, Cummins T, Tripuraneni KR et al (2016) Inaccuracies in the use of magnification markers in digital hip radiographs. Clin Orthop Relat Res 474:1812–1817. https://doi.org/10.1007/s11999-016-4704-8

    Article  PubMed  PubMed Central  Google Scholar 

  27. Heng H-YC, Bin AbdRazak HR, Mitra AK (2015) Radiographic grading of the patellofemoral joint is more accurate in skyline compared to lateral views. Ann Transl Med 3:263. https://doi.org/10.3978/j.issn.2305-5839.2015.10.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ji X, Li H, Yang S et al (2022) Patellofemoral osteoarthritis does not influence clinical outcomes of fixed-bearing unicompartmental knee arthroplasty. Medicine (Baltimore) 101

  29. Dai Y, Yin H, Xu C et al (2021) Association of patellofemoral morphology and alignment with the radiographic severity of patellofemoral osteoarthritis. J Orthop Surg Res 16:548. https://doi.org/10.1186/s13018-021-02681-2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Horváth G, Koroknai G, Ács B et al (2011) Prevalence of radiographic primary hip and knee osteoarthritis in a representative Central European population. Int Orthop 35:971–975. https://doi.org/10.1007/s00264-010-1069-6

    Article  PubMed  Google Scholar 

  31. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sport Traumatol Arthrosc 2:19–26. https://doi.org/10.1007/bf01552649

    Article  CAS  Google Scholar 

  32. Caton J, Deschamps G, Chambat P et al (1982) Patella infera. Apropos of 128 cases. Rev Chir Orthop Reparatrice Appar Mot 68:317–325

    CAS  PubMed  Google Scholar 

  33. Lewonowski K, Dorr LD, McPherson EJ et al (1997) Medialization of the patella in total knee arthroplasty. J Arthroplast 12:161–167. https://doi.org/10.1016/s0883-5403(97)90062-0

    Article  CAS  Google Scholar 

  34. Aglietti P, Insall JN, Cerulli G (1983) Patellar pain and incongruence. I: Measurements of incongruence. Clin Orthop Relat Res 217–224

  35. Burger JA, Kleeblad LJ, Laas N, Pearle AD (2019) The influence of preoperative radiographic patellofemoral degenerative changes and malalignment on patellofemoral-specific outcome scores following fixed-bearing medial unicompartmental knee arthroplasty. J Bone Joint Surg Am 101:1662–1669. https://doi.org/10.2106/JBJS.18.01385

    Article  Google Scholar 

  36. Murphy SB, Simon SR, Kijewski PK et al (1987) Femoral anteversion. J Bone Jt Surg Am 69:1169

    Article  CAS  Google Scholar 

  37. Schmaranzer F, Lerch TD, Siebenrock KA et al (2019) Differences in femoral torsion among various measurement methods increase in hips with excessive femoral torsion. Clin Orthop Relat Res 477:1073–1083. https://doi.org/10.1097/corr.0000000000000610

    Article  PubMed  Google Scholar 

  38. Köse Ö, Acar B, Çay F et al (2018) Inter- and intraobserver reliabilities of four different radiographic grading scales of osteoarthritis of the knee joint. J Knee Surg 31:247–253. https://doi.org/10.1055/s-0037-1602249

    Article  PubMed  Google Scholar 

  39. Müller GM, Månsson S, Müller MF et al (2014) MR imaging with metal artifact-reducing sequences and gadolinium contrast agent in a case-control study of periprosthetic abnormalities in patients with metal-on-metal hip prostheses. Skeletal Radiol 43:1101–1112. https://doi.org/10.1007/s00256-014-1893-7

    Article  PubMed  Google Scholar 

  40. Biedert RM, Netzer P, Gal I et al (2011) The lateral condyle index: a new index for assessing the length of the lateral articular trochlea as predisposing factor for patellar instability. Int Orthop 35:1327–1331. https://doi.org/10.1007/s00264-010-1142-1

    Article  PubMed  Google Scholar 

  41. Kaiser D, Götschi T, Bachmann E et al (2022) Deepening trochleoplasty may dramatically increase retropatellar contact pressures- a pilot study establishing a finite element model. J Exp Orthop 9:76. https://doi.org/10.1186/s40634-022-00512-9

    Article  PubMed  PubMed Central  Google Scholar 

  42. Carender CN, Rand DR, DeMik DE et al (2023) Presence of a lateral trochlear osteophyte predicts medial unicompartmental arthroplasty failure at midterm follow-up. Arthroplast Today 19:101044. https://doi.org/10.1016/j.artd.2022.09.013

    Article  PubMed  Google Scholar 

  43. Jimenez AE, Levy BJ, Grimm NL et al (2021) Relationship between patellar morphology and known anatomic risk factors for patellofemoral instability. Orthop J Sport Med 9:2325967120988690. https://doi.org/10.1177/2325967120988690

    Article  Google Scholar 

  44. Fucentese SF, von Roll A, Koch PP et al (2006) The patella morphology in trochlear dysplasia–a comparative MRI study. Knee 13:145–150. https://doi.org/10.1016/j.knee.2005.12.005

    Article  PubMed  Google Scholar 

  45. Ng JP, Fan JCH, Chau WW et al (2020) Does component axial rotational alignment affect clinical outcomes in Oxford unicompartmental knee arthroplasty? Knee 27:1953–1962. https://doi.org/10.1016/j.knee.2020.10.016

    Article  PubMed  Google Scholar 

  46. Kim TK, Mittal A, Meshram P et al (2021) Evidence-based surgical technique for medial unicompartmental knee arthroplasty. Knee Surg Relat Res 33:2. https://doi.org/10.1186/s43019-020-00084-x

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liow MHL, Tsai T-Y, Dimitriou D et al (2016) Does 3-dimensional in vivo component rotation affect clinical outcomes in unicompartmental knee arthroplasty? J Arthroplasty 31:2167–2172. https://doi.org/10.1016/j.arth.2016.03.003

    Article  PubMed  Google Scholar 

  48. Perrone FL, Baron S, Suero EM et al (2018) Patient-reported outcome measures (PROMs) in patients undergoing patellofemoral arthroplasty and total knee replacement: a comparative study. Technol Heal care Off J Eur Soc Eng Med 26:507–514. https://doi.org/10.3233/THC-181185

    Article  Google Scholar 

  49. Crossley KM, Macri EM, Cowan SM et al (2018) The patellofemoral pain and osteoarthritis subscale of the KOOS (KOOS-PF): development and validation using the COSMIN checklist. Br J Sports Med 52:1130–1136. https://doi.org/10.1136/bjsports-2016-096776

    Article  PubMed  Google Scholar 

  50. Fucentese SF (2018) Patellofemoral instability. Orthopade 47:77–86. https://doi.org/10.1007/s00132-017-3501-8

    Article  CAS  PubMed  Google Scholar 

  51. Stephen JM, Lumpaopong P, Dodds AL et al (2015) The effect of tibial tuberosity medialization and lateralization on patellofemoral joint kinematics, contact mechanics, and stability. Am J Sports Med 43:186–194. https://doi.org/10.1177/0363546514554553

    Article  PubMed  Google Scholar 

  52. Carlson VR, Boden BP, Shen A et al (2017) The tibial tubercle-trochlear groove distance is greater in patients with patellofemoral pain: implications for the origin of pain and clinical interventions. Am J Sports Med 45:1110–1116. https://doi.org/10.1177/0363546516681002

    Article  PubMed  Google Scholar 

  53. Tanaka MJ, D’Amore T, Elias JJ et al (2019) Anteroposterior distance between the tibial tuberosity and trochlear groove in patients with patellar instability. Knee 26:1278–1285. https://doi.org/10.1016/j.knee.2019.08.011

    Article  PubMed  Google Scholar 

  54. Kaplan DJ, Mojica ES, Ortega PF et al (2022) Posterior tibial tubercle measured by the sagittal TT-TG distance correlates with increased risk for patellofemoral chondral lesions. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-022-06988-3

    Article  PubMed  Google Scholar 

  55. Cheng J, Feng M, Cao G, Lu S (2020) Efficacy and mid/long-term survivorship of mobile-bearing unicompartmental knee arthroplasty for medial compartment knee osteoarthritis combined patellofemoral joint arthritis: a prospective cohort study protocol. BMJ Open 10:e038448. https://doi.org/10.1136/bmjopen-2020-038448

    Article  PubMed  PubMed Central  Google Scholar 

  56. Harris LK, Troelsen A, Terluin B et al (2022) Interpretation threshold values for the Oxford Knee Score in patients undergoing unicompartmental knee arthroplasty. Acta Orthop 93:634–642. https://doi.org/10.2340/17453674.2022.3909

    Article  PubMed  PubMed Central  Google Scholar 

  57. Green A, Liles C, Rushton A, Kyte DG (2014) Measurement properties of patient-reported outcome measures (PROMS) in patellofemoral pain syndrome: a systematic review. Man Ther 19:517–526. https://doi.org/10.1016/j.math.2014.05.013

    Article  PubMed  Google Scholar 

  58. Pongcharoen B, Reutiwarangkoon C (2016) The comparison of anterior knee pain in severe and non severe arthritis of the lateral facet of the patella following a mobile bearing unicompartmental knee arthroplasty. Springerplus 5:202. https://doi.org/10.1186/s40064-016-1914-1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data; (2) drafting the article or revising it critically for important intellectual content; (3) final approval of the version to be submitted; (4) being accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Octavian Andronic.

Ethics declarations

Ethical approval

The presented study was conducted in accordance with Swiss and international law requirements. This retrospective study was approved by the ethics commission board of northwest and central Switzerland and was conducted entirely at the authors’ institution: BASEC Nr 2022–01,280.

Informed consent

All participants have given written consent to participate in the study after being provided with appropriate documentation. Participants also gave consent for publication of the study results.

Competing interests

The authors declare that they have no conflict of interest regarding this study. Prof. Dr. med. Näder Helmy is a medical advisor of Medacta International (Switzerland) and receives royalties from Medacta International (Switzerland). Prof. Helmy reports no conflict of interest in relation to this article.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andronic, O., Helmy, N., Kellner, C. et al. A decreased tibial tuberosity-trochlear groove distance is associated with lateral patellofemoral joint degeneration after implantation of medial fixed-bearing unicompartmental knee arthroplasty — a minimum five year follow-up. International Orthopaedics (SICOT) 47, 2225–2233 (2023). https://doi.org/10.1007/s00264-023-05812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-023-05812-y

Keywords

Navigation