Skip to main content

Advertisement

Log in

Femoral bone remodeling after short-stem total hip arthroplasty: a prospective densitometric study

  • Original Article
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Due to improved prosthesis designs and surgical techniques, indications for total hip arthroplasty (THA) now include younger and more active patients. Preserving bone stock and soft tissue in these patients is paramount to allow for future revision. Designed for anatomical reconstruction, short femoral stems have the potential to reduce adaptive bone loss and stress shielding. To confirm this, we evaluated bone remodeling around a short femoral stem and the accuracy of hip joint reconstruction.

Methods

This prospective observational study involved 46 patients with short-stem THA for clinical and radiographic analysis. We evaluated bone remodeling by Gruen zone using dual-energy X-ray absorptiometry in 45 patients and assessed the accuracy of hip joint reconstruction using caput-collum-diaphyseal angles. Additionally, we reported functional scores and pain.

Results

Patients were followed for a mean of 24.1 (SD 2.2) months. Bone mineral density increased mainly in the lateral region (Gruen zones 2 and 3) and in the distal-medial region (Gruen zone 5), suggestive of lateral loading. Most caput-collum-diaphyseal angles remained stable after surgery, especially in patients with varus hips. Harris Hip Scores improved significantly, from 57.2 (SD 20.0) pre-operatively to 97.2 (SD 4.0) at 24 months post-operatively (P < 0.0001). Finally, we encountered one peri-operative dislocation but no post-operative complications.

Conclusion

Short femoral stems successfully limited stress shielding and minimized periprosthetic bone loss without compromising primary stability. We were able to accurately reconstruct anatomical relationships in most patients. Finally, excellent clinical outcomes and low complication rates confirmed the favourable results of short-stem THA.

Trial registration: DRKS00017076

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kärrholm J, Mohaddes M, Odin D, Vinblad J, Rogmark C, Rolfson O (2018) Annual report 2017. Swedish Hip Arthroplasty Register

  2. Bieger R, Ignatius A, Decking R, Claes L, Reichel H, Durselen L (2012) Primary stability and strain distribution of cementless hip stems as a function of implant design. Clin Biomech (Bristol, Avon) 27(2):158–164. https://doi.org/10.1016/j.clinbiomech.2011.08.004

    Article  Google Scholar 

  3. Falez F, Casella F, Panegrossi G, Favetti F, Barresi C (2008) Perspectives on metaphyseal conservative stems. J Orthop Traumatol 9(1):49–54. https://doi.org/10.1007/s10195-008-0105-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karachalios T, Palaiochorlidis E, Komnos G (2019) Clinical relevance of bone remodelling around conventional and conservative (short-stem) total hip arthroplasty implants. Hip Int 29(1):4–6. https://doi.org/10.1177/1120700018810846

    Article  PubMed  Google Scholar 

  5. Chen HH, Morrey BF, An KN, Luo ZP (2009) Bone remodeling characteristics of a short-stemmed total hip replacement. J Arthroplast 24(6):945–950. https://doi.org/10.1016/j.arth.2008.07.014

    Article  CAS  Google Scholar 

  6. Bieger R, Ignatius A, Reichel H, Durselen L (2013) Biomechanics of a short stem: in vitro primary stability and stress shielding of a conservative cementless hip stem. J Orthop Res 31(8):1180–1186. https://doi.org/10.1002/jor.22349

    Article  PubMed  Google Scholar 

  7. Gronewold J, Berner S, Olender G, Hurschler C, Windhagen H, von Lewinski G, Floerkemeier T (2014) Changes in strain patterns after implantation of a short stem with metaphyseal anchorage compared to a standard stem: an experimental study in synthetic bone. Orthop Rev 6(1):5211. https://doi.org/10.4081/or.2014.5211

    Article  Google Scholar 

  8. Freeman MA, Plante-Bordeneuve P (1994) Early migration and late aseptic failure of proximal femoral prostheses. J Bone Joint Surg (Br) 76(3):432–438

    Article  CAS  Google Scholar 

  9. Salemyr M, Muren O, Ahl T, Boden H, Eisler T, Stark A, Skoldenberg O (2015) Lower periprosthetic bone loss and good fixation of an ultra-short stem compared to a conventional stem in uncemented total hip arthroplasty. Acta Orthop 86(6):659–666. https://doi.org/10.3109/17453674.2015.1067087

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lindahl H (2007) Epidemiology of periprosthetic femur fracture around a total hip arthroplasty. Injury 38(6):651–654. https://doi.org/10.1016/j.injury.2007.02.048

    Article  PubMed  Google Scholar 

  11. Lerch M, von der Haar-Tran A, Windhagen H, Behrens BA, Wefstaedt P, Stukenborg-Colsman CM (2012) Bone remodelling around the Metha short stem in total hip arthroplasty: a prospective dual-energy X-ray absorptiometry study. Int Orthop 36(3):533–538. https://doi.org/10.1007/s00264-011-1361-0

    Article  PubMed  Google Scholar 

  12. Mortimer ES, Rosenthall L, Paterson I, Bobyn JD (1996) Effect of rotation on periprosthetic bone mineral measurements in a hip phantom. Clin Orthop Relat Res 324:269–274

    Article  Google Scholar 

  13. DeLee JG, Charnley J (1976) Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop Relat Res 121:20–32

    Google Scholar 

  14. Gruen TA, McNeice GM, Amstutz HC (1979) “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27

    Google Scholar 

  15. Freitag T, Hein MA, Wernerus D, Reichel H, Bieger R (2016) Bone remodelling after femoral short stem implantation in total hip arthroplasty: 1-year results from a randomized DEXA study. Arch Orthop Trauma Surg 136(1):125–130. https://doi.org/10.1007/s00402-015-2370-z

    Article  PubMed  Google Scholar 

  16. Brinkmann V, Radetzki F, Delank KS, Wohlrab D, Zeh A (2015) A prospective randomized radiographic and dual-energy X-ray absorptiometric study of migration and bone remodeling after implantation of two modern short-stemmed femoral prostheses. J Orthop Traumatol 16(3):237–243. https://doi.org/10.1007/s10195-015-0335-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lerch M, Kurtz A, Windhagen H, Bouguecha A, Behrens BA, Wefstaedt P, Stukenborg-Colsman CM (2012) The cementless Bicontact stem in a prospective dual-energy X-ray absorptiometry study. Int Orthop 36(11):2211–2217. https://doi.org/10.1007/s00264-012-1616-4

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lindalen E, Dahl J, Nordsletten L, Snorrason F, Hovik O, Rohrl S (2012) Reverse hybrid and cemented hip replacement compared using radiostereometry and dual-energy X-ray absorptiometry: 43 hips followed for 2 years in a prospective trial. Acta Orthop 83(6):592–598. https://doi.org/10.3109/17453674.2012.742393

    Article  PubMed  PubMed Central  Google Scholar 

  19. Parchi PD, Cervi V, Piolanti N, Ciapini G, Andreani L, Castellini I, Poggetti A, Lisanti M (2014) Densitometric evaluation of periprosthetic bone remodeling. Clin Cases Mineral Bone Metab 11(3):226–231

    Google Scholar 

  20. Jacobs JJ, Sumner DR, Galante JO (1993) Mechanisms of bone loss associated with total hip replacement. Orthop Clin North Am 24(4):583–590

    CAS  PubMed  Google Scholar 

  21. Leichtle UG, Leichtle CI, Schmidt B, Martini F (2006) Peri-prosthetic bone density after implantation of a custom-made femoral component. A five-year follow-up. J Bone Joint Surg Brit 88(4):467–471. https://doi.org/10.1302/0301-620x.88b4.16613

    Article  CAS  PubMed  Google Scholar 

  22. Ang KC, Das De S, Goh JC, Low SL, Bose K (1997) Periprosthetic bone remodelling after cementless total hip replacement. A prospective comparison of two different implant designs. J Bone Joint Surg Brit 79(4):675–679

    Article  CAS  PubMed  Google Scholar 

  23. Gulow J, Scholz R, Freiherr von Salis-Soglio G (2007) Short-stemmed endoprostheses in total hip arthroplasty. Der Orthopade 36(4):353–359. https://doi.org/10.1007/s00132-007-1071-x

    Article  CAS  PubMed  Google Scholar 

  24. Flecher X, Ollivier M, Argenson JN (2016) Lower limb length and offset in total hip arthroplasty. Orthop Traumatol Surg Res 102(1 Suppl):S9–S20. https://doi.org/10.1016/j.otsr.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  25. Gombar C, Janositz G, Friebert G, Sisak K (2019) The DePuy Proxima short stem for total hip arthroplasty - excellent outcome at a minimum of 7 years. J Orthop Surg (Hong Kong) 27(2):2309499019838668. https://doi.org/10.1177/2309499019838668

    Article  Google Scholar 

  26. Pivec R, Johnson AJ, Mears SC, Mont MA (2012) Hip arthroplasty. Lancet (London, England) 380(9855):1768–1777. https://doi.org/10.1016/s0140-6736(12)60607-2

    Article  Google Scholar 

  27. Pospula W, Abu Noor T, Roshdy T, Al Mukaimi A (2008) Cemented and cementless total hip replacement. Critical analysis and comparison of clinical and radiological results of 182 cases operated in Al Razi Hospital, Kuwait. Med Princ Pract 17(3):239–243. https://doi.org/10.1159/000117799

    Article  PubMed  Google Scholar 

  28. Roth A, Richartz G, Sander K, Sachse A, Fuhrmann R, Wagner A, Venbrocks RA (2005) Periprosthetic bone loss after total hip endoprosthesis. Dependence on the type of prosthesis and preoperative bone configuration. Der Orthopade 34(4):334–344. https://doi.org/10.1007/s00132-005-0773-1

    Article  CAS  PubMed  Google Scholar 

  29. Boden HS, Skoldenberg OG, Salemyr MO, Lundberg HJ, Adolphson PY (2006) Continuous bone loss around a tapered uncemented femoral stem: a long-term evaluation with DEXA. Acta Orthop 77(6):877–885. https://doi.org/10.1080/17453670610013169

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Medical Minds GmbH provided medical writing and editorial support. Dominik Pfluger carried out the statistical analysis.

Funding

The work was partially supported by Mathys Ltd. Bettlach. Funds sponsored statistical analysis through an independent consultant as well as medical writing and editorial support from a medical writing agency. No other external sources were involved.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the study.

Corresponding author

Correspondence to Josef Hochreiter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The local ethics committee reviewed and approved the study protocol; the institutional review board also approved the study (ethics approval registration number: EK 19/14; issue date: 16 June 2014). Additionally, the study was registered with the German Clinical Trials Register (clinical trial registration number: DRKS00017076). We conducted the study in accordance with the study protocol, the latest Helsinki Declaration, and good clinical practice guidelines.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hochreiter, J., Mattiassich, G., Ortmaier, R. et al. Femoral bone remodeling after short-stem total hip arthroplasty: a prospective densitometric study. International Orthopaedics (SICOT) 44, 753–759 (2020). https://doi.org/10.1007/s00264-020-04486-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-020-04486-0

Keywords

Navigation