Skip to main content

Advertisement

Log in

TGF-β1 mediates tumor immunosuppression aggravating at the late stage post-high-light-dose photodynamic therapy

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is an emerging clinical treatment that is expected to become an important adjuvant strategy for the immunotherapeutic cancer treatment. Recently, numerous works have reported combination strategies. However, clinical data showed that the anti-tumor immune response of PDT was not lasting though existing. The immune activation effect will eventually turn to immunosuppressive effect and get aggravated at the late stage post-PDT. So far, the mechanism is still unclear, which limits the design of specific correction strategies and further development of PDT. Several lines of evidence suggest a role for TGF-β1 in the immunosuppression associated with PDT. Herein, this study systematically illustrated the dynamic changes of immune states post-PDT within the tumor microenvironment. The results clearly demonstrated that high-light-dose PDT, as a therapeutic dose, induced early immune activation followed by late immunosuppression, which was mediated by the activated TGF-β1 upregulation. Then, the mechanism of PDT-induced TGF-β1 accumulation and immunosuppression was elucidated, including the ROS/TGF-β1/MMP-9 positive feedback loop and CD44-mediated local amplification, which was further confirmed by spatial transcriptomics, as well as by the extensive immune inhibitory effect of local high concentration of TGF-β1. Finally, a TGF-β blockade treatment strategy was presented as a promising combinational strategy to reverse high-light-dose PDT-associated immunosuppression. The results of this study provide new insights for the biology mechanism and smart improvement approaches to enhance tumor photodynamic immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available within the article and its Supplementary Information files and from the corresponding authors upon reasonable request.

References

  1. Gunaydin G, Gedik ME, Ayan S (2021) Photodynamic therapy for the treatment and diagnosis of cancer–a review of the current clinical status. Front Chem 9:686303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cramer GM, Moon EK, Cengel KA, Busch TM (2020) Photodynamic therapy and immune checkpoint blockade(dagger). Photochem Photobiol 96(5):954–961

    Article  CAS  PubMed  Google Scholar 

  3. Pham TC, Nguyen V, Choi Y, Lee S, Yoon J (2021) Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem Rev 121(21):13454–13619

    Article  CAS  PubMed  Google Scholar 

  4. Han L, Wang Y, Huang X, Liu F, Ma C, Feng F, Zhang J, Liu W, Qu W, Pang H, Xue J (2020) Specific-oxygen-supply functionalized core-shell nanoparticles for smart mutual-promotion between photodynamic therapy and gambogic acid-induced chemotherapy. Biomaterials 257:120228

    Article  CAS  PubMed  Google Scholar 

  5. Guo J, Feng K, Wu W, Ruan Y, Liu H, Han X, Shao G, Sun X (2021) Smart (131) I-labeled self-illuminating photosensitizers for deep tumor therapy. Angew Chem Int Ed Engl 60(40):21884–21889

    Article  CAS  PubMed  Google Scholar 

  6. Beltran HI, Yu Y, Ossendorp F, Korbelik M, Oliveira S (2020) Preclinical and clinical evidence of immune responses triggered in oncologic photodynamic therapy: clinical recommendations. J Clin Med 9(2):333

    Article  Google Scholar 

  7. Song R, Li T, Ye J, Sun F, Hou B, Saeed M, Gao J, Wang Y, Zhu Q, Xu Z, Yu H (2021) Acidity-activatable dynamic nanoparticles boosting ferroptotic cell death for immunotherapy of cancer. Adv Mater 33(31):2101155

    Article  CAS  Google Scholar 

  8. Zhang Y, Liao Y, Tang Q, Lin J, Huang P (2021) Biomimetic nanoemulsion for synergistic photodynamic-immunotherapy against hypoxic breast tumor. Angew Chem Int Ed 60(19):10647–10653

    Article  CAS  Google Scholar 

  9. Xu X, Deng G, Sun Z, Luo Y, Liu J, Yu X, Zhao Y, Gong P, Liu G, Zhang P, Pan F, Cai L, Tang BZ (2021) A biomimetic aggregation-induced emission photosensitizer with antigen-presenting and hitchhiking function for lipid droplet targeted photodynamic immunotherapy. Adv Mater 33(33):2102322

    Article  CAS  Google Scholar 

  10. Reginato E, Lindenmann J, Langner C, Schweintzger N, Bambach I, Smolle-Juttner F, Wolf P (2014) Photodynamic therapy downregulates the function of regulatory T cells in patients with esophageal squamous cell carcinoma. Photochem Photobiol Sci 13(9):1281–1289

    Article  CAS  PubMed  Google Scholar 

  11. Pellegrini C, Orlandi A, Costanza G, Di Stefani A, Piccioni A, Di Cesare A, Chiricozzi A, Ferlosio A, Peris K, Fargnoli MC (2017) Expression of IL-23/Th17-related cytokines in basal cell carcinoma and in the response to medical treatments. PLoS ONE 12(8):e183415

    Article  Google Scholar 

  12. Korbelik M, Hamblin MR (2015) The impact of macrophage-cancer cell interaction on the efficacy of photodynamic therapy. Photochem Photobiol Sci 14(8):1403–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thanos SM, Halliday GM, Damian DL (2012) Nicotinamide reduces photodynamic therapy-induced immunosuppression in humans. Br J Dermatol 167(3):631–636

    Article  CAS  PubMed  Google Scholar 

  14. Matthews YJ, Damian DL (2010) Topical photodynamic therapy is immunosuppressive in humans. Br J Dermatol 162(3):637–641

    Article  CAS  PubMed  Google Scholar 

  15. Jackson CM, Choi J, Lim M (2019) Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol 20(9):1100–1109

    Article  CAS  PubMed  Google Scholar 

  16. Larson C, Oronsky B, Carter CA, Oronsky A, Knox SJ, Sher D, Reid TR (2020) TGF-beta: a master immune regulator. Expert Opin Ther Targets 24(5):427–438

    Article  CAS  PubMed  Google Scholar 

  17. Tauriello D, Sancho E, Batlle E (2022) Overcoming TGFbeta-mediated immune evasion in cancer. Nat Rev Cancer 22(1):25–44

    Article  CAS  PubMed  Google Scholar 

  18. Korbelik M (2006) PDT-associated host response and its role in the therapy outcome. Lasers Surg Med 38(5):500–508

    Article  PubMed  Google Scholar 

  19. Yang T, Tan Y, Zhang W, Yang W, Luo J, Chen L, Liu H, Yang G, Lei X (2020) Effects of ALA-PDT on the healing of mouse skin wounds infected with pseudomonas aeruginosa and its related mechanisms. Front Cell Dev Biol 8:585132

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen J, Luo J, Tan Y, Wang M, Liu Z, Yang T, Lei X (2019) Effects of low-dose ALA-PDT on fibroblast photoaging induced by UVA irradiation and the underlying mechanisms. Photodiagn Photodyn Ther 27:79–84

    Article  CAS  Google Scholar 

  21. Wang P, Han J, Wei M, Xu Y, Zhang G, Zhang H, Shi L, Liu X, Hamblin MR, Wang X (2018) Remodeling of dermal collagen in photoaged skin using low-dose 5-aminolevulinic acid photodynamic therapy occurs via the transforming growth factor-beta pathway. J Biophotonics 11(6):e201700357

    Article  PubMed  PubMed Central  Google Scholar 

  22. Citrin DE (2017) Recent developments in radiotherapy. N Engl J Med 377(11):1065–1075

    Article  CAS  PubMed  Google Scholar 

  23. Vanpouille-Box C, Diamond JM, Pilones KA, Zavadil J, Babb JS, Formenti SC, Barcellos-Hoff MH, Demaria S (2015) TGFbeta Is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 75(11):2232–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiaojie W, Banda J, Qi H, Chang AK, Bwalya C, Chao L, Li X (2022) Scarless wound healing: current insights from the perspectives of TGF-beta, KGF-1, and KGF-2. Cytokine Growth Factor Rev 66:26–37

    Article  PubMed  Google Scholar 

  25. Sanjabi S, Oh SA, Li MO (2017) Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol 9(6):a22236

    Article  Google Scholar 

  26. Guidolin K, Ding L, Yan H, Englesakis HM, Chadi S, Quereshy F, Zheng G (2022) Photodynamic therapy for colorectal cancer: a systematic review of clinical research. Surg Innov 29(6):788–803

    Article  PubMed  PubMed Central  Google Scholar 

  27. Soundararajan R, Fradette JJ, Konen JM, Moulder S, Zhang X, Gibbons DL, Varadarajan N, Wistuba II, Tripathy D, Bernatchez C, Byers LA, Chang JT, Contreras A, Lim B, Parra ER, Roarty EB, Wang J, Yang F, Barton M, Rosen JM, Mani SA (2019) Targeting the interplay between epithelial-to-mesenchymal-transition and the immune system for effective immunotherapy. Cancers 11(5):714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pena-Romero AC, Orenes-Pinero E (2022) Dual effect of immune cells within tumour microenvironment: pro- and anti-tumour effects and their triggers. Cancers 14(7):1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hwang D, Ramsey JD, Makita N, Sachse C, Jordan R, Sokolsky-Papkov M, Kabanov AV (2019) Novel poly(2-oxazoline) block copolymer with aromatic heterocyclic side chains as a drug delivery platform. J Control Release 307:261–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L (2019) Macrophages and metabolism in the tumor microenvironment. Cell Metab 30(1):36–50

    Article  CAS  PubMed  Google Scholar 

  31. Khatua S, Simal-Gandara J, Acharya K (2022) Understanding immune-modulatory efficacy in vitro. Chem Biol Interact 352:109776

    Article  CAS  PubMed  Google Scholar 

  32. Hutas G, Bajnok E, Gal I, Finnegan A, Glant TT, Mikecz K (2008) CD44-specific antibody treatment and CD44 deficiency exert distinct effects on leukocyte recruitment in experimental arthritis. Blood 112(13):4999–5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, Johansson I, Phung B, Harbst K, Vallon-Christersson J, van Schoiack A, Lövgren K, Warren S, Jirström K, Olsson H, Pietras K, Ingvar C, Isaksson K, Schadendorf D, Schmidt H, Bastholt L, Carneiro A, Wargo JA, Svane IM, Jönsson G (2020) Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577(7791):561–565

    Article  CAS  PubMed  Google Scholar 

  34. Hao Y, Baker D, Ten Dijke P (2019) TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci 20(11):2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19(2):156–172

    Article  CAS  PubMed  Google Scholar 

  36. Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, Zhu C, Yuan X, Zhang J, Luo Z, Du Y, Li Q, Lou Y, Qiu Y, You J (2019) Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat Commun 10(1):3349

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sanmamed MF, Chen L (2018) A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175(2):313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li X, Liu R, Su X, Pan Y, Han X, Shao C, Shi Y (2019) Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol Cancer 18(1):177

    Article  PubMed  PubMed Central  Google Scholar 

  40. Batlle E, Massague J (2019) Transforming growth factor-beta signaling in immunity and cancer. Immunity 50(4):924–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Derynck R, Turley SJ, Akhurst RJ (2021) TGFbeta biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 18(1):9–34

    Article  PubMed  Google Scholar 

  42. Chung J, Huda MN, Shin Y, Han S, Akter S, Kang I, Ha J, Choe W, Choi TG, Kim SS (2021) Correlation between oxidative stress and transforming growth factor-beta in cancers. Int J Mol Sci 22(24):13181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krstic J, Santibanez JF (2014) Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells. Sci World J 2014:1–14

    Article  Google Scholar 

  44. Lee-Sayer SS, Dong Y, Arif AA, Olsson M, Brown KL, Johnson P (2015) The where, when, how, and why of hyaluronan binding by immune cells. Front Immunol 6:150

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kessenbrock K, Plaks V, Werb Z (2010) Matrix Metalloproteinases: regulators of the Tumor Microenvironment. Cell 141(1):52–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kang J, Demaria S, Formenti S (2016) Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer 4:51

    Article  PubMed  PubMed Central  Google Scholar 

  47. Grassberger C, Ellsworth SG, Wilks MQ, Keane FK, Loeffler JS (2019) Assessing the interactions between radiotherapy and antitumour immunity. Nat Rev Clin Oncol 16(12):729–745

    Article  PubMed  Google Scholar 

  48. Kim S, Kim SA, Nam GH, Hong Y, Kim GB, Choi Y, Lee S, Cho Y, Kwon M, Jeong C, Kim S, Kim IS (2021) In situ immunogenic clearance induced by a combination of photodynamic therapy and rho-kinase inhibition sensitizes immune checkpoint blockade response to elicit systemic antitumor immunity against intraocular melanoma and its metastasis. J Immunother Cancer 9(1):e1481

    Article  Google Scholar 

  49. Sun B, Bte Rahmat JN, Zhang Y (2022) Advanced techniques for performing photodynamic therapy in deep-seated tissues. Biomaterials 291:121875

    Article  CAS  PubMed  Google Scholar 

  50. Shafirstein G, Oakley E, Hamilton S, Habitzruther M, Chamberlain S, Sexton S, Curtin L, Bellnier DA (2022) In vivo models for studying interstitial photodynamic therapy of locally advanced cancer. Methods Mol Biol 2451:151–162

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (82173954, 81801819, 82204340), China Postdoctoral Science Foundation (2021T140504, 2020M682230, 2022M723508), Natural Science Foundation of Shandong Province of China (ZR2020MH295), Natural Science Foundation of Jiangsu Province of China (BK20221048), Jiangsu Funding Program for Excellent Postdoctoral Talent (2022ZB295) and State Drug Administration-Key Laboratory of Quality Control of Chinese Medicinal Materials and Detection Pieces (2022GSMPA-KL06).

Author information

Authors and Affiliations

Authors

Contributions

LH did conceptualization, methodology, investigation, validation, writing—original draft. XH performed methodology, investigation, validation, and formal analysis. BZ done methodology and investigation. HZ was involved in formal analysis and visualization. RW done visualization. SL and HL contributed to methodology. FF supervised the study. XM did funding acquisition. FL was involved in conceptualization and funding acquisition. JX did funding acquisition and supervision. WL performed funding acquisition, supervision, and project administration.

Corresponding authors

Correspondence to Fulei Liu, Jingwei Xue or Wenyuan Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All animal experiments were performed according to the guidelines for laboratory animals established by China Pharmaceutical University (SYXK 2021-0011).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14541 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Huang, X., Zhao, B. et al. TGF-β1 mediates tumor immunosuppression aggravating at the late stage post-high-light-dose photodynamic therapy. Cancer Immunol Immunother 72, 3079–3095 (2023). https://doi.org/10.1007/s00262-023-03479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03479-3

Keywords

Navigation