Skip to main content

Advertisement

Log in

Tumoral CD105 promotes immunosuppression, metastasis, and angiogenesis in renal cell carcinoma

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

CD105 (endoglin) is a transmembrane protein that functions as a TGF-beta coreceptor and is highly expressed on endothelial cells. Unsurprisingly, preclinical and clinical evidence strongly suggests that CD105 is an important contributor to tumor angiogenesis and tumor progression. Emerging evidence suggests that CD105 is also expressed by tumor cells themselves in certain cancers such as renal cell carcinoma (RCC). In human RCC tumor cells, CD105 expression is associated with stem cell-like properties and contributes to the malignant phenotype in vitro and in xenograft models. However, as a regulator of TGF-beta signaling, there is a striking lack of evidence for the role of tumor-expressed CD105 in the anti-tumor immune response and the tumor microenvironment. In this study, we report that tumor cell-expressed CD105 potentiates both the in vitro and in vivo tumorigenic potential of RCC in a syngeneic murine RCC tumor model. Importantly, we find that tumor cell-expressed CD105 sculpts the tumor microenvironment by enhancing the recruitment of immunosuppressive cell types and inhibiting the polyfunctionality of tumor-infiltrating CD4+ and CD8+ T cells. Finally, while CD105 expression by endothelial cells is a well-established contributor to tumor angiogenesis, we also find that tumor cell-expressed CD105 significantly contributes to tumor angiogenesis in RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the article and its supplementary information files.

References

  1. Kidney and Renal Pelvis Cancer [Internet]. Available from: https://seer.cancer.gov/statfacts/html/kidrp.html.

  2. Padala SA, Barsouk A, Thandra KC, Saginala K, Mohammed A, Vakiti A et al (2020) Epidemiology of renal cell carcinoma. World J Oncol 11(3):79–87

    Article  PubMed  PubMed Central  Google Scholar 

  3. Capitanio U, Bensalah K, Bex A, Boorjian SA, Bray F, Coleman J et al (2019) Epidemiology of renal cell carcinoma. Eur Urol 75(1):74–84

    Article  PubMed  Google Scholar 

  4. Stubbs C, Bardoli AD, Afshar M, Pirrie S, Miscoria M, Wheeley I et al (2017) A study of angiogenesis markers in patients with renal cell carcinoma undergoing therapy with sunitinib. Anticancer Res 37(1):253–259

    Article  CAS  PubMed  Google Scholar 

  5. Mertz KD, Demichelis F, Kim R, Schraml P, Storz M, Diener PA et al (2007) Automated immunofluorescence analysis defines microvessel area as a prognostic parameter in clear cell renal cell cancer. Hum Pathol 38(10):1454–1462

    Article  CAS  PubMed  Google Scholar 

  6. Barbara NP, Wrana JL, Letarte M (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274(2):584–594

    Article  CAS  PubMed  Google Scholar 

  7. Cheifetz S, Bellon T, Cales C, Vera S, Bernabeu C, Massague J et al (1992) Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267(27):19027–19030

    Article  CAS  PubMed  Google Scholar 

  8. Nogues A, Gallardo-Vara E, Zafra MP, Mate P, Marijuan JL, Alonso A et al (2020) Endoglin (CD105) and VEGF as potential angiogenic and dissemination markers for colorectal cancer. World J Surg Oncol 18(1):99

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dales JP, Garcia S, Bonnier P, Duffaud F, Andrac-Meyer L, Ramuz O et al (2003) CD105 expression is a marker of high metastatic risk and poor outcome in breast carcinomas. Correlations between immunohistochemical analysis and long-term follow-up in a series of 929 patients. Am J Clin Pathol 119(3):374–80

    Article  PubMed  Google Scholar 

  10. Jeng KS, Sheen IS, Lin SS, Leu CM, Chang CF (2021) The role of endoglin in hepatocellular carcinoma. Int J Mol Sci 22(6):3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu Y, Wang D, Zhao LM, Zhao XL, Shen JJ, Xie Y et al (2013) Endoglin is necessary for angiogenesis in human ovarian carcinoma-derived primary endothelial cells. Cancer Biol Ther 14(10):937–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Momoi Y, Nishida J, Miyakuni K, Kuroda M, Kubota SI, Miyazono K et al (2021) Heterogenous expression of endoglin marks advanced renal cancer with distinct tumor microenvironment fitness. Cancer Sci 112(8):3136–3149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saroufim A, Messai Y, Hasmim M, Rioux N, Iacovelli R, Verhoest G et al (2014) Tumoral CD105 is a novel independent prognostic marker for prognosis in clear-cell renal cell carcinoma. Br J Cancer 110(7):1778–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saeednejad Zanjani L, Madjd Z, Abolhasani M, Shariftabrizi A, Rasti A, Asgari M (2018) Expression of CD105 cancer stem cell marker in three subtypes of renal cell carcinoma. Cancer Biomark 21(4):821–837

    Article  CAS  PubMed  Google Scholar 

  15. Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G (2008) Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J 22(10):3696–3705

    Article  CAS  PubMed  Google Scholar 

  16. Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H et al (2017) Endoglin is essential for the maintenance of self-renewal and chemoresistance in renal cancer stem cells. Stem Cell Reports 9(2):464–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu J, Guan W, Yan L, Ye Z, Wu L, Xu H (2019) Cancer stem cell marker endoglin (CD105) induces epithelial mesenchymal transition (EMT) but not metastasis in clear cell renal cell carcinoma. Stem Cells Int 2019:9060152

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rich JN (2016) Cancer stem cells: understanding tumor hierarchy and heterogeneity. Medicine 95(1 Suppl 1):S2–S7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pasche B (2001) Role of transforming growth factor beta in cancer. J Cell Physiol 186(2):153–168

    Article  CAS  PubMed  Google Scholar 

  20. Faustino-Rocha A, Oliveira PA, Pinho-Oliveira J, Teixeira-Guedes C, Soares-Maia R, da Costa RG et al (2013) Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab Anim 42(6):217–224

    Article  Google Scholar 

  21. Murphy KA, James BR, Wilber A, Griffith TS (2017) A syngeneic mouse model of metastatic renal cell carcinoma for quantitative and longitudinal assessment of preclinical therapies. J Vis Exp 122:e55080

    Google Scholar 

  22. Feldman AT, Wolfe D (2014) Tissue processing and hematoxylin and eosin staining. Methods Mol Biol 1180:31–43

    Article  CAS  PubMed  Google Scholar 

  23. Dubinski W, Gabril M, Iakovlev VV, Scorilas A, Youssef YM, Faragalla H et al (2012) Assessment of the prognostic significance of endoglin (CD105) in clear cell renal cell carcinoma using automated image analysis. Hum Pathol 43(7):1037–1043

    Article  CAS  PubMed  Google Scholar 

  24. Bravo-Cordero JJ, Hodgson L, Condeelis J (2012) Directed cell invasion and migration during metastasis. Curr Opin Cell Biol 24(2):277–283

    Article  CAS  PubMed  Google Scholar 

  25. Guo B, Rooney P, Slevin M, Li C, Parameshwar S, Liu D et al (2004) Overexpression of CD105 in rat myoblasts: role of CD105 in cell attachment, spreading and survival. Int J Oncol 25(2):285–291

    CAS  PubMed  Google Scholar 

  26. Guerrero-Esteo M, Lastres P, Letamendia A, Perez-Alvarez MJ, Langa C, Lopez LA et al (1999) Endoglin overexpression modulates cellular morphology, migration, and adhesion of mouse fibroblasts. Eur J Cell Biol 78(9):614–623

    Article  CAS  PubMed  Google Scholar 

  27. Duff SE, Li C, Garland JM, Kumar S (2003) CD105 is important for angiogenesis: evidence and potential applications. FASEB J 17(9):984–992

    Article  CAS  PubMed  Google Scholar 

  28. Devaud C, Westwood JA, John LB, Flynn JK, Paquet-Fifield S, Duong CP et al (2014) Tissues in different anatomical sites can sculpt and vary the tumor microenvironment to affect responses to therapy. Mol Ther 22(1):18–27

    Article  CAS  PubMed  Google Scholar 

  29. Sobczuk P, Brodziak A, Khan MI, Chhabra S, Fiedorowicz M, Welniak-Kaminska M et al (2020) Choosing the right animal model for renal cancer research. Transl Oncol 13(3):100745

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R et al (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69(4):1553–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Finke JH, Rayman PA, Ko JS, Bradley JM, Gendler SJ, Cohen PA (2013) Modification of the tumor microenvironment as a novel target of renal cell carcinoma therapeutics. Cancer J 19(4):353–364

    Article  CAS  PubMed  Google Scholar 

  32. Serova M, Tijeras-Raballand A, Dos Santos C, Martinet M, Neuzillet C, Lopez A et al (2016) Everolimus affects vasculogenic mimicry in renal carcinoma resistant to sunitinib. Oncotarget 7(25):38467–38486

    Article  PubMed  PubMed Central  Google Scholar 

  33. You B, Sun Y, Luo J, Wang K, Liu Q, Fang R et al (2021) Androgen receptor promotes renal cell carcinoma (RCC) vasculogenic mimicry (VM) via altering TWIST1 nonsense-mediated decay through lncRNA-TANAR. Oncogene 40(9):1674–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xie C, Schwarz EM, Sampson ER, Dhillon RS, Li D, O’Keefe RJ et al (2012) Unique angiogenic and vasculogenic properties of renal cell carcinoma in a xenograft model of bone metastasis are associated with high levels of vegf-a and decreased ang-1 expression. J Orthop Res 30(2):325–333

    Article  CAS  PubMed  Google Scholar 

  35. Goumans MJ, Liu Z, ten Dijke P (2009) TGF-beta signaling in vascular biology and dysfunction. Cell Res 19(1):116–127

    Article  CAS  PubMed  Google Scholar 

  36. Nassiri F, Cusimano MD, Scheithauer BW, Rotondo F, Fazio A, Yousef GM et al (2011) Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res 31(6):2283–2290

    CAS  PubMed  Google Scholar 

  37. Romero D, O’Neill C, Terzic A, Contois L, Young K, Conley BA et al (2011) Endoglin regulates cancer-stromal cell interactions in prostate tumors. Cancer Res 71(10):3482–3493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu Y, Jovanovic B, Pins M, Lee C, Bergan RC (2002) Over expression of endoglin in human prostate cancer suppresses cell detachment, migration and invasion. Oncogene 21(54):8272–8281

    Article  CAS  PubMed  Google Scholar 

  39. Zhang S, Zhang E, Long J, Hu Z, Peng J, Liu L et al (2019) Immune infiltration in renal cell carcinoma. Cancer Sci 110(5):1564–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schoonderwoerd MJA, Koops MFM, Angela RA, Koolmoes B, Toitou M, Paauwe M et al (2020) Targeting endoglin-expressing regulatory T cells in the tumor microenvironment enhances the effect of PD1 checkpoint inhibitor immunotherapy. Clin Cancer Res 26(14):3831–3842

    Article  CAS  PubMed  Google Scholar 

  41. Tsujie M, Tsujie T, Toi H, Uneda S, Shiozaki K, Tsai H et al (2008) Anti-tumor activity of an anti-endoglin monoclonal antibody is enhanced in immunocompetent mice. Int J Cancer 122(10):2266–2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grange C, Tapparo M, Tritta S, Deregibus MC, Battaglia A, Gontero P et al (2015) Role of HLA-G and extracellular vesicles in renal cancer stem cell-induced inhibition of dendritic cell differentiation. BMC Cancer 15:1009

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yin JH, Liu CS, Yu AP, Yao JQ, Shen YJ, Cao JP (2018) Pro-angiogenic activity of monocytic-type myeloid-derived suppressor cells from Balb/C mice infected with echinococcus granulosus and the regulatory role of miRNAs. Cell Physiol Biochem 51(3):1207–1220

    Article  CAS  PubMed  Google Scholar 

  44. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J (2014) Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 5:75

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fiedorowicz M, Khan MI, Strzemecki D, Orzel J, Welniak-Kaminska M, Sobiborowicz A et al (2020) Renal carcinoma CD105-/CD44- cells display stem-like properties in vitro and form aggressive tumors in vivo. Sci Rep 10(1):5379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Devin Lowe at the Department of Immunotherapeutics and Biotechnology, TTUHSC, for providing the CRISPR-Cas9 vector.

Funding

This work is supported by the National Institutes of Health (NIH) 1R15CA216205-01 grant to Laurence Wood.

Author information

Authors and Affiliations

Authors

Contributions

LMW conceptualized the study. MO and LMW designed the experiments. MO carried out experiments, data analysis, preparation of figures, and manuscript drafting, HMN supported in orthotopic tumor modeling, HS performed scratch assay, and AD supported with FACS sorting. LMW acquired funding, provided supervision, and editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Laurence M. Wood.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicting interests.

Ethical approval

All applicable international, national, and institutional standards for the care and use of experimental animals were followed. All studies involving animals were carried out in accordance with ethical standards of the Texas Tech University Health Sciences Center under the IACUC protocol number 17018.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 483 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oladejo, M., Nguyen, HM., Seah, H. et al. Tumoral CD105 promotes immunosuppression, metastasis, and angiogenesis in renal cell carcinoma. Cancer Immunol Immunother 72, 1633–1646 (2023). https://doi.org/10.1007/s00262-022-03356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03356-5

Keywords