Skip to main content

Advertisement

Log in

Opening up new VISTAs: V-domain immunoglobulin suppressor of T cell activation (VISTA) targeted near-infrared photoimmunotherapy (NIR-PIT) for enhancing host immunity against cancers

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

V-domain immunoglobulin suppressor of T cell activation (VISTA) is an inhibitory immune checkpoint molecule that is broadly expressed on lymphoid and myeloid cells, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Near-infrared photoimmunotherapy (NIR-PIT) is a cancer treatment that utilizes an antibody-photoabsorber (IRDye 700DX NHS ester) conjugate to selectively kill target cells after the local application of NIR light. Depletion of VISTA-expressing cells in the tumor microenvironment (TME) using NIR-PIT could enhance anti-tumor immune responses by removing immune suppressive cells. The purpose of this study was to evaluate the anti-tumor efficacy of VISTA-targeted NIR-PIT using two murine tumor models, MC38-luc and LL2-luc. VISTA was expressed on T cells including Tregs and MDSCs in the TME of these tumors. In contrast, CD45 − cells, including cancer cells, did not express VISTA. VISTA-targeted NIR-PIT depleted VISTA-expressing cells ex vivo. In vivo VISTA-targeted NIR-PIT inhibited tumor progression and prolonged survival in both models. After VISTA-targeted NIR-PIT, augmented CD8 + T cell and dendritic cell activation were observed in regional lymph nodes. In conclusion, VISTA-targeted NIR-PIT can effectively treat tumors by decreasing VISTA-expressing immune suppressor cells in the TME. Local depletion of VISTA-expressing cells in the tumor bed using NIR-PIT is a promising new cancer immunotherapy for treating various types of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL, Kobayashi H (2011) Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 17:1685–1691. https://doi.org/10.1038/nm.2554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kobayashi H, Choyke PL (2019) Near-infrared photoimmunotherapy of cancer. Acc Chem Res 52:2332–2339. https://doi.org/10.1021/acs.accounts.9b00273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sato K, Ando K, Okuyama S et al (2018) Photoinduced ligand release from a silicon phthalocyanine dye conjugated with monoclonal antibodies: a mechanism of cancer cell cytotoxicity after near-infrared photoimmunotherapy. ACS Cent Sci 4:1559–1569. https://doi.org/10.1021/acscentsci.8b00565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sato K, Sato N, Xu B, Nakamura Y, Nagaya T, Choyke PL, Hasegawa Y, Kobayashi H (2016) Spatially selective depletion of tumor-associated regulatory T cells with near-infrared photoimmunotherapy. Sci Transl Med 8:352ra110. https://doi.org/10.1126/scitranslmed.aaf6843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Okada R, Maruoka Y, Furusawa A, Inagaki F, Nagaya T, Fujimura D, Choyke PL, Kobayashi H (2019) The effect of antibody fragments on CD25 targeted regulatory T cell near-infrared photoimmunotherapy. Bioconjug Chem 30:2624–2633. https://doi.org/10.1021/acs.bioconjchem.9b00547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Okada R, Kato T, Furusawa A, Inagaki F, Wakiyama H, Choyke PL, Kobayashi H (2021) Local depletion of immune checkpoint ligand CTLA4 expressing cells in tumor beds enhances antitumor host immunity. Adv Ther (Weinh) 4:2000269. https://doi.org/10.1002/adtp.202000269

    Article  CAS  Google Scholar 

  7. Wang L, Rubinstein R, Lines JL et al (2011) VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med 208:577–592. https://doi.org/10.1084/jem.20100619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Le Mercier I, Chen W, Lines JL, Day M, Li J, Sergent P, Noelle RJ, Wang L (2014) VISTA regulates the development of protective antitumor immunity. Cancer Res 74:1933–1944. https://doi.org/10.1158/0008-5472.CAN-13-1506

    Article  PubMed  CAS  Google Scholar 

  9. Villarroel-Espindola F, Yu X, Datar I et al (2018) Spatially resolved and quantitative analysis of VISTA/PD-1H as a novel immunotherapy target in human non-small cell lung cancer. Clin Cancer Res 24:1562–1573. https://doi.org/10.1158/1078-0432.CCR-17-2542

    Article  PubMed  CAS  Google Scholar 

  10. Hong S, Yuan Q, Xia H et al (2019) Analysis of VISTA expression and function in renal cell carcinoma highlights VISTA as a potential target for immunotherapy. Protein Cell 10:840–845. https://doi.org/10.1007/s13238-019-0642-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Xie S, Huang J, Qiao Q, Zang W, Hong S, Tan H, Dong C, Yang Z, Ni L (2018) Expression of the inhibitory B7 family molecule VISTA in human colorectal carcinoma tumors. Cancer Immunol Immunother 67:1685–1694. https://doi.org/10.1007/s00262-018-2227-8

    Article  PubMed  CAS  Google Scholar 

  12. Mulati K, Hamanishi J, Matsumura N et al (2019) VISTA expressed in tumour cells regulates T cell function. Br J Cancer 120:115–127. https://doi.org/10.1038/s41416-018-0313-5

    Article  PubMed  CAS  Google Scholar 

  13. Yuan L, Tatineni J, Mahoney KM, Freeman GJ (2021) VISTA: a mediator of quiescence and a promising target in cancer immunotherapy. Trends Immunol 42:209–227. https://doi.org/10.1016/j.it.2020.12.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. ClinicalTrials.gov Phase 1 Study of CI-8993 Anti-VISTA Antibody in Patients With Advanced Solid Tumor Malignancies. https://clinicaltrials.gov/ct2/show/study/NCT04475523. Accessed 11 Feb 2021

  15. Maruoka Y, Furusawa A, Okada R et al (2020) Combined CD44- and CD25-targeted near-infrared photoimmunotherapy selectively kills cancer and regulatory T cells in syngeneic mouse cancer models. Cancer Immunol Res 8:345–355. https://doi.org/10.1158/2326-6066.CIR-19-0517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Quezada SA, Peggs KS, Curran MA, Allison JP (2006) CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest 116:1935–1945. https://doi.org/10.1172/JCI27745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sato E, Olson SH, Ahn J et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Nat Acad Sci 102(51):18538–18543. https://doi.org/10.1073/pnas.0509182102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Baras AS, Drake C, Liu JJ et al (2016) The ratio of CD8 to Treg tumor-infiltrating lymphocytes is associated with response to cisplatin-based neoadjuvant chemotherapy in patients with muscle invasive urothelial carcinoma of the bladder. Oncoimmunology 5:e1134412. https://doi.org/10.1080/2162402X.2015.1134412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Nagaya T, Nakamura Y, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Allen C, Kobayashi H (2017) Syngeneic mouse models of oral cancer are effectively targeted by anti-CD44-based NIR-PIT. Mol Cancer Res 15:1667–1677. https://doi.org/10.1158/1541-7786.MCR-17-0333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Nagaya T, Nakamura Y, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Kobayashi H (2017) Near-infrared photoimmunotherapy targeting prostate cancer with prostate-specific membrane antigen (PSMA) antibody. Mol Cancer Res 15:1153–1162. https://doi.org/10.1158/1541-7786.MCR-17-0164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wakiyama H, Kato T, Furusawa A, Choyke PL, Kobayashi H (2021) Near infrared photoimmunotherapy of cancer; possible clinical applications. Nanophotonics 10:3135–3151. https://doi.org/10.1515/nanoph-2021-0119

    Article  CAS  Google Scholar 

  22. Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H (2021) Near infrared photoimmunotherapy: a review of targets for cancer therapy. Cancers. https://doi.org/10.3390/cancers13112535

    Article  PubMed  PubMed Central  Google Scholar 

  23. Togashi Y, Shitara K, Nishikawa H (2019) Regulatory T cells in cancer immunosuppression: implications for anticancer therapy. Nat Rev Clin Oncol 16:356–371. https://doi.org/10.1038/s41571-019-0175-7

    Article  PubMed  CAS  Google Scholar 

  24. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174. https://doi.org/10.1038/nri2506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Veglia F, Perego M, Gabrilovich D (2018) Myeloid-derived suppressor cells coming of age. Nat Immunol 19:108–119. https://doi.org/10.1038/s41590-017-0022-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 17:343–359. https://doi.org/10.1023/a:1006326203858

    Article  PubMed  CAS  Google Scholar 

  27. Hoffman RM (2015) Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer 15:451–452. https://doi.org/10.1038/nrc3972

    Article  PubMed  CAS  Google Scholar 

  28. Borggrewe M, Grit C, Den Dunnen WFA, Burm SM, Bajramovic JJ, Noelle RJ, Eggen BJL, Laman JD (2018) VISTA expression by microglia decreases during inflammation and is differentially regulated in CNS diseases. Glia 66:2645–2658. https://doi.org/10.1002/glia.23517

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research (ZIA BC 011513). FI was also supported with a Grant from National Center for Global Health and Medicine Research Institute, Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisataka Kobayashi.

Ethics declarations

Conflicts of interest

No potential conflicts of interest were disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1051 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakiyama, H., Furusawa, A., Okada, R. et al. Opening up new VISTAs: V-domain immunoglobulin suppressor of T cell activation (VISTA) targeted near-infrared photoimmunotherapy (NIR-PIT) for enhancing host immunity against cancers. Cancer Immunol Immunother 71, 2869–2879 (2022). https://doi.org/10.1007/s00262-022-03205-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03205-5

Keywords

Navigation