Skip to main content

Advertisement

Log in

The pivotal role of cytotoxic NK cells in mediating the therapeutic effect of anti-CD47 therapy in mycosis fungoides

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

CD47 is frequently overexpressed on tumor cells and is an attractive therapeutic target. The mechanism by which anti-CD47 immunotherapy eliminates cutaneous lymphoma has not been explored. We utilized CRISPR/Cas-9 CD47 knock-out, depletion of NK cells, and mice genetically deficient in IFN-γ to elucidate the mechanism of anti-CD47 therapy in a murine model of cutaneous T cell lymphoma (CTCL). CD47 was found to be a crucial factor for tumor progression since CD47 KO CTCL exhibited a delay in tumor growth. The treatment of CD47 WT murine CTCL with anti-CD47 antibodies led to a significant reduction in tumor burden as early as four days after the first treatment and accompanied by an increased percentage of cytotoxic NK cells at the tumor site. The depletion of NK cells resulted in marked attenuation of the anti-tumor effect of anti-CD47. Notably, the treatment of CD47 WT tumors in IFN-γ KO mice with anti-CD47 antibodies was efficient, demonstrating that IFN-γ was not required to mediate anti-CD47 therapy. We were able to potentiate the therapeutic effect of anti-CD47 therapy by IFN-α. That combination resulted in an increased number of cytotoxic CD107a + IFN-γ-NK1.1 cells and intermediate CD62L + NKG2a-NK1.1. Correlative data from a clinical trial (clinicaltrials.gov, NCT02890368) in patients with CTCL utilizing SIRPαFc to block CD47 confirmed our in vivo observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim YH, Liu HL, Mraz-Gernhard S, Varghese A, Hoppe RT (2003) Long-term outcome of 525 patients with mycosis fungoides and Sezary syndrome: clinical prognostic factors and risk for disease progression. Arch Dermatol 139:857–866

    PubMed  Google Scholar 

  2. Lesokhin AM, Ansell SM, Armand P et al (2016) Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol Off J Am Soc Clin Oncol 34:2698–2704. https://doi.org/10.1200/JCO.2015.65.9789

    Article  CAS  Google Scholar 

  3. Khodadoust MS, Rook AH, Porcu P et al (2020) Pembrolizumab in relapsed and refractory mycosis fungoides and sezary syndrome: a multicenter phase II study. J Clin Oncol 38:20–28. https://doi.org/10.1200/JCO.19.01056

    Article  CAS  PubMed  Google Scholar 

  4. Ono K, Onishi Y, Kobayashi M et al (2019) gammadelta T cell clonal proliferation early after PD-1 blockade. Ann Hematol 98:219–220. https://doi.org/10.1007/s00277-018-3406-6

    Article  PubMed  Google Scholar 

  5. Ratner L, Waldmann TA, Janakiram M, Brammer JE (2018) Rapid progression of adult T-cell leukemia-lymphoma after PD-1 inhibitor therapy. N Engl J Med 378:1947–1948. https://doi.org/10.1056/NEJMc1803181

    Article  PubMed  Google Scholar 

  6. Wartewig T, Kurgyis Z, Keppler S et al (2017) PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis. Nature 552:121–125. https://doi.org/10.1038/nature24649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cetinozman F, Jansen PM, Vermeer MH, Willemze R (2012) Differential expression of programmed death-1 (PD-1) in Sezary syndrome and mycosis fungoides. Arch Dermatol 148:1379–1385. https://doi.org/10.1001/archdermatol.2012.2089

    Article  PubMed  Google Scholar 

  8. Wada DA, Wilcox RA, Harrington SM, Kwon ED, Ansell SM, Comfere NI (2011) Programmed death 1 is expressed in cutaneous infiltrates of mycosis fungoides and Sezary syndrome. Am J Hematol 86:325–327. https://doi.org/10.1002/ajh.21960

    Article  PubMed  Google Scholar 

  9. Kantekure K, Yang Y, Raghunath P, Schaffer A, Woetmann A, Zhang Q, Odum N, Wasik M (2012) Expression patterns of the immunosuppressive proteins PD-1/CD279 and PD-L1/CD274 at different stages of cutaneous T-cell lymphoma/mycosis fungoides. Am J Dermatopathol 34:126–128. https://doi.org/10.1097/DAD.0b013e31821c35cb

    Article  PubMed  PubMed Central  Google Scholar 

  10. Oldenborg PA (2013) CD47: a cell surface glycoprotein which regulates multiple functions of hematopoietic cells in health and disease. ISRN Hematol 2013:614619. https://doi.org/10.1155/2013/614619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP (2000) Role of CD47 as a marker of self on red blood cells. Science 288:2051–2054

    Article  CAS  PubMed  Google Scholar 

  12. Soto-Pantoja DR, Stein EV, Rogers NM, Sharifi-Sanjani M, Isenberg JS, Roberts DD (2013) Therapeutic opportunities for targeting the ubiquitous cell surface receptor CD47. Expert Opin Ther Targets 17:89–103. https://doi.org/10.1517/14728222.2013.733699

    Article  CAS  PubMed  Google Scholar 

  13. Weiskopf K (2017) Cancer immunotherapy targeting the CD47/SIRPalpha axis. Eur J Cancer 76:100–109. https://doi.org/10.1016/j.ejca.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  14. Akel R, Kurban M, Abbas O (2016) CD47 expression for in situ and invasive cutaneous epithelial lesions. J Am Acad Dermatol 75:434–436. https://doi.org/10.1016/j.jaad.2016.03.011

    Article  PubMed  Google Scholar 

  15. Brightwell RM, Grzankowski KS, Lele S, Eng K, Arshad M, Chen H, Odunsi K (2016) The CD47 “don’t eat me signal” is highly expressed in human ovarian cancer. Gynecol Oncol 143:393–397. https://doi.org/10.1016/j.ygyno.2016.08.325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chao MP, Tang C, Pachynski RK, Chin R, Majeti R, Weissman IL (2011) Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy. Blood 118:4890–4901. https://doi.org/10.1182/blood-2011-02-338020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim D, Wang J, Willingham SB, Martin R, Wernig G, Weissman IL (2012) Anti-CD47 antibodies promote phagocytosis and inhibit the growth of human myeloma cells. Leukemia 26:2538–2545. https://doi.org/10.1038/leu.2012.141

    Article  CAS  PubMed  Google Scholar 

  18. Krampitz GW, George BM, Willingham SB et al (2016) Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors. Proc Natl Acad Sci U S A 113:4464–4469. https://doi.org/10.1073/pnas.1600007113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr, van Rooijen N, Weissman IL (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138:286–299. https://doi.org/10.1016/j.cell.2009.05.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. RendtlewDanielsen JM, Knudsen LM, Dahl IM, Lodahl M, Rasmussen T (2007) Dysregulation of CD47 and the ligands thrombospondin 1 and 2 in multiple myeloma. Br J Haematol 138:756–760. https://doi.org/10.1111/j.1365-2141.2007.06729.x

    Article  CAS  Google Scholar 

  21. Willingham SB, Volkmer JP, Gentles AJ et al (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A 109:6662–6667. https://doi.org/10.1073/pnas.1121623109

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang C, Gao S, Zhang H, Xu L, Liu J, Wang M, Zhang S (2016) CD47 is a potential target for the treatment of laryngeal squamous cell carcinoma. Cell Physiol Biochem 40:126–136. https://doi.org/10.1159/000452530

    Article  CAS  PubMed  Google Scholar 

  23. Zhang H, Lu H, Xiang L, Bullen JW, Zhang C, Samanta D, Gilkes DM, He J, Semenza GL (2015) HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc Natl Acad Sci U S A 112:E6215–E6223. https://doi.org/10.1073/pnas.1520032112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee TK, Cheung VC, Lu P, Lau EY, Ma S, Tang KH, Tong M, Lo J, Ng IO (2014) Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a therapeutic target for hepatocellular carcinoma. Hepatology 60:179–191. https://doi.org/10.1002/hep.27070

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Tan M, Zhang S et al (2015) Expression and significance of CD44, CD47 and c-met in ovarian clear cell carcinoma. Int J Mol Sci 16:3391–3404. https://doi.org/10.3390/ijms16023391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, Traver D, van Rooijen N, Weissman IL (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138:271–285. https://doi.org/10.1016/j.cell.2009.05.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Petrova PS, Viller NN, Wong M et al (2017) TTI-621 (SIRPalphaFc): a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding. Clin Cancer Res 23:1068–1079. https://doi.org/10.1158/1078-0432.CCR-16-1700

    Article  CAS  PubMed  Google Scholar 

  28. Johnson LDS, Banerjee S, Kruglov O et al (2019) Targeting CD47 in Sezary syndrome with SIRPalphaFc. Blood Adv 3:1145–1153. https://doi.org/10.1182/bloodadvances.2018030577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Olsen EA, Whittaker S, Kim YH et al (2011) Clinical end points and response criteria in mycosis fungoides and Sezary syndrome: a consensus statement of the International Society for Cutaneous Lymphomas, the United States Cutaneous Lymphoma Consortium, and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer. J Clin Oncol 29:2598–2607. https://doi.org/10.1200/JCO.2010.32.0630

    Article  PubMed  PubMed Central  Google Scholar 

  30. Picker LJ, Weiss LM, Medeiros LJ, Wood GS, Warnke RA (1987) Immunophenotypic criteria for the diagnosis of non-Hodgkin’s lymphoma. Am J Pathol 128:181–201

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 11: 155–68.

  32. Flamant S, Lebastard M, Pescher P, Besmond C, Milon G, Marchal G (2003) Enhanced cloning efficiency of mouse bone marrow macrophage progenitors correlates with increased content of CSF-1 receptor of their progeny at low oxygen tension. Microbes Infect 5:1064–1069

    Article  CAS  PubMed  Google Scholar 

  33. Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA (1993) Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259:1739–1742

    Article  CAS  PubMed  Google Scholar 

  34. Wu X, Schulte BC, Zhou YW, Haribhai D, Mackinnon AC, Plaza JA, Williams CB, Hwang ST (2014) Depletion of M2-like tumor-associated macrophages delays cutaneous T cell lymphoma development in vivo. J Invest Dermatol. https://doi.org/10.1038/jid.2014.206

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu X, Sells RE, Hwang ST (2011) Upregulation of inflammatory cytokines and oncogenic signal pathways preceding tumor formation in a murine model of T-cell lymphoma in skin. J Invest Dermatol 131:1727–1734. https://doi.org/10.1038/jid.2011.89

    Article  CAS  PubMed  Google Scholar 

  36. Watanabe R, Gehad A, Yang C et al (2015) Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med. 7:279ra39. https://doi.org/10.1126/scitranslmed.3010302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang Y, Litvinov IV, Wang Y et al (2014) Thymocyte selection-associated high mobility group box gene (TOX) is aberrantly over-expressed in mycosis fungoides and correlates with poor prognosis. Oncotarget 5:4418

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang Y, Wang Y, Yu R et al (2012) Molecular markers of early-stage mycosis fungoides. J Investig Dermatol 132:1698–1706

    Article  CAS  PubMed  Google Scholar 

  39. Morimura S, Sugaya M, Suga H et al (2014) TOX expression in different subtypes of cutaneous lymphoma. Arch Dermatol Res 306:843–849

    Article  CAS  PubMed  Google Scholar 

  40. Dulmage BO, Akilov O, Vu JR, Falo LD, Geskin LJ (2019) Dysregulation of the TOX-RUNX3 pathway in cutaneous T-cell lymphoma. Oncotarget 10:3104

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang M, Hutter G, Kahn SA et al (2016) Anti-CD47 treatment stimulates phagocytosis of glioblastoma by M1 and M2 polarized macrophages and promotes M1 polarized macrophages in vivo. PLoS ONE 11:e0153550. https://doi.org/10.1371/journal.pone.0153550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nath PR, Gangaplara A, Pal-Nath D, Mandal A, Maric D, Sipes JM, Cam M, Shevach EM, Roberts DD (2018) CD47 expression in natural killer cells regulates homeostasis and modulates immune response to lymphocytic choriomeningitis virus. Front Immunol 9:2985. https://doi.org/10.3389/fimmu.2018.02985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shen X, Fu B, Liu Y, Guo C, Ye Y, Sun R, Li J, Tian Z, Wei H (2016) NKp30(+) NK cells are associated with HBV control during pegylated-interferon-alpha-2b therapy of chronic hepatitis B. Sci Rep 6:38778. https://doi.org/10.1038/srep38778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duvic M (2007) Systemic monotherapy vs combination therapy for CTCL: rationale and future strategies. Oncology (Williston Park) 21:33–40

    Google Scholar 

  45. Duvic M (2015) Choosing a systemic treatment for advanced stage cutaneous T-cell lymphoma: mycosis fungoides and Sezary syndrome. Hematology Am Soc Hematol Educ Program 2015:529–544. https://doi.org/10.1182/asheducation-2015.1.529

    Article  PubMed  Google Scholar 

  46. Aydin E, Johansson J, Nazir FH, Hellstrand K, Martner A (2017) Role of NOX2-derived reactive oxygen species in NK cell-mediated control of murine melanoma metastasis. Cancer Immunol Res 5:804–811. https://doi.org/10.1158/2326-6066.CIR-16-0382

    Article  CAS  PubMed  Google Scholar 

  47. Takeda K, Nakayama M, Sakaki M, Hayakawa Y, Imawari M, Ogasawara K, Okumura K, Smyth MJ (2011) IFN-gamma production by lung NK cells is critical for the natural resistance to pulmonary metastasis of B16 melanoma in mice. J Leukoc Biol 90:777–785. https://doi.org/10.1189/jlb.0411208

    Article  CAS  PubMed  Google Scholar 

  48. Vonderheide RH (2015) CD47 blockade as another immune checkpoint therapy for cancer. Nat Med 21:1122–1123. https://doi.org/10.1038/nm.3965

    Article  CAS  PubMed  Google Scholar 

  49. Wu L, Yu GT, Deng WW et al (2018) Anti-CD47 treatment enhances anti-tumor T-cell immunity and improves immunosuppressive environment in head and neck squamous cell carcinoma. Oncoimmunology 7:e1397248. https://doi.org/10.1080/2162402X.2017.1397248

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang H, Tan M, Zhang S et al (2015) Expression and significance of CD44, CD47 and c-met in ovarian clear cell carcinoma. Int J Mol Sci 16:3391–3404. https://doi.org/10.3390/ijms16023391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Matlung HL, Szilagyi K, Barclay NA, van den Berg TK (2017) The CD47-SIRPalpha signaling axis as an innate immune checkpoint in cancer. Immunol Rev 276:145–164. https://doi.org/10.1111/imr.12527

    Article  CAS  PubMed  Google Scholar 

  52. Ring NG, Herndler-Brandstetter D, Weiskopf K et al (2017) Anti-SIRPalpha antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Natl Acad Sci U S A 114:E10578–E10585. https://doi.org/10.1073/pnas.1710877114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sockolosky JT, Dougan M, Ingram JR, Ho CC, Kauke MJ, Almo SC, Ploegh HL, Garcia KC (2016) Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc Natl Acad Sci U S A 113:E2646–E2654. https://doi.org/10.1073/pnas.1604268113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Soto-Pantoja DR, Terabe M, Ghosh A, Ridnour LA, DeGraff WG, Wink DA, Berzofsky JA, Roberts DD (2014) CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Cancer Res 74:6771–6783. https://doi.org/10.1158/0008-5472.CAN-14-0037-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li Y, Zhang M, Wang X, Liu W, Wang H, Yang YG (2020) Vaccination with CD47 deficient tumor cells elicits an antitumor immune response in mice. Nat Commun 11:581. https://doi.org/10.1038/s41467-019-14102-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nath PR, Pal-Nath D, Mandal A, Cam MC, Schwartz AL, Roberts DD (2019) Natural killer cell recruitment and activation are regulated by CD47 expression in the tumor microenvironment. Cancer Immunol Res 7:1547–1561. https://doi.org/10.1158/2326-6066.CIR-18-0367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jain S, Van Scoyk A, Morgan EA et al (2019) Targeted inhibition of CD47-SIRPalpha requires Fc-FcgammaR interactions to maximize activity in T-cell lymphomas. Blood 134:1430–1440. https://doi.org/10.1182/blood.2019001744

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yanagita T, Murata Y, Tanaka D et al (2017) Anti-SIRPalpha antibodies as a potential new tool for cancer immunotherapy. JCI Insight 2:e89140. https://doi.org/10.1172/jci.insight.89140

    Article  PubMed  PubMed Central  Google Scholar 

  59. Briski R, Feldman AL, Bailey NG et al (2015) Survival in patients with limited-stage peripheral T-cell lymphomas. Leuk Lymphoma 56:1665–1670. https://doi.org/10.3109/10428194.2014.963078

    Article  PubMed  Google Scholar 

  60. Hughes CF, Khot A, McCormack C et al (2015) Lack of durable disease control with chemotherapy for mycosis fungoides and Sezary syndrome: a comparative study of systemic therapy. Blood 125:71–81. https://doi.org/10.1182/blood-2014-07-588236

    Article  CAS  PubMed  Google Scholar 

  61. Mak V, Hamm J, Chhanabhai M et al (2013) Survival of patients with peripheral T-cell lymphoma after first relapse or progression: spectrum of disease and rare long-term survivors. J Clin Oncol 31:1970–1976. https://doi.org/10.1200/JCO.2012.44.7524

    Article  CAS  PubMed  Google Scholar 

  62. Wilcox RA (2011) Cutaneous T-cell lymphoma: 2011 update on diagnosis, risk-stratification, and management. Am J Hematol 86:928–948. https://doi.org/10.1002/ajh.22139

    Article  CAS  PubMed  Google Scholar 

  63. Bunn PA Jr, Foon KA, Ihde DC et al (1984) Recombinant leukocyte A interferon: an active agent in advanced cutaneous T-cell lymphomas. Ann Intern Med 101:484–487

    Article  PubMed  Google Scholar 

  64. Bruder Costa J, Dufeu-Duchesne T, Leroy V et al (2016) Pegylated interferon alpha-2a triggers NK-cell functionality and specific T-Cell responses in patients with chronic HBV infection without HBsAg seroconversion. PLoS ONE 11:e0158297. https://doi.org/10.1371/journal.pone.0158297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schwartz AL, Nath PR, Allgauer M et al (2019) Antisense targeting of CD47 enhances human cytotoxic T-cell activity and increases survival of mice bearing B16 melanoma when combined with anti-CTLA4 and tumor irradiation. Cancer Immunol Immunother 68:1805–1817. https://doi.org/10.1007/s00262-019-02397-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Antony Green for excellent assistance with CD47 staining of skin samples from patients with mycosis fungoides. Single-cell RNA sequencing was supported by research funding from the Drs. Martin and Dorothy Spatz Charitable Foundation (OEA).

Funding

Trillium Therapeutics (OEA); Drs. Martin and Dorothy Spatz Charitable Foundation (OEA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg E. Akilov.

Ethics declarations

Conflict of interests

OEA is a clinical investigator for Trillium Therapeutics and a recipient of a research grant from Trillium Therapeutics. No potential conflicts of interest were disclosed by the other authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 112 kb)

Supplementary file2 (PDF 410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruglov, O., Johnson, L.D.S., Minic, A. et al. The pivotal role of cytotoxic NK cells in mediating the therapeutic effect of anti-CD47 therapy in mycosis fungoides. Cancer Immunol Immunother 71, 919–932 (2022). https://doi.org/10.1007/s00262-021-03051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03051-x

Keywords

Navigation