Skip to main content

Advertisement

Log in

Human hydatid cyst fluid-induced therapeutic anti-cancer immune responses via NK1.1+ cell activation in mice

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Echinococcus granulosus is a cestode parasite which causes cystic echinococcosis disease. Previously we observed that vaccination with E. granulosus antigens from human hydatid cyst fluid (HCF) significantly inhibits colon cancer growth. In the present work, we evaluate the anti-tumor immune response induced by human HCF against LL/2 lung cancer in mice. HCF vaccination protected from tumor growth, both in prophylactic and therapeutic settings, and significantly increased mouse survival compared to control mice. Considering that tumor-associated carbohydrate antigens are expressed in E. granulosus, we oxidized terminal carbohydrates in HCF with sodium periodate. This treatment abrogates the anti-tumor activity induced by HCF vaccination. We found that HCF vaccination-induced IgG antibodies that recognize LL/2 tumor cells by flow cytometry. An antigen-specific immune response is induced with HCF vaccination in the tumor-draining lymph nodes and spleen characterized by the production of IL-5 and, in less extent, IFNɣ. In the tumor microenvironment, we found that NK1.1 positive cells from HCF-treated mice showed higher expression of CD69 than control mice ones, indicating a higher level of activation. When we depleted these cells by administrating the NK-specific antibody NK1.1, a significantly decreased survival was observed in HCF-induced mice, suggesting that NK1.1+ cells mediate the anti-tumor protection induced by HCF. These results suggest that HCF can evoke an integrated anti-tumor immune response involving both, the innate and adaptive components, and provide novel insights into the understanding of the intricate relationship between HCF vaccination and tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30. https://doi.org/10.3322/caac.21387

    Article  Google Scholar 

  2. Hirsch FR, Suda K, Wiens J, Bunn PA Jr (2016) New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet 388:1012–1024. https://doi.org/10.1016/S0140-6736(16)31473-8

    Article  PubMed  Google Scholar 

  3. Du L, Herbst RS, Morgensztern D (2017) Immunotherapy in lung cancer. Hematol Oncol Clin North Am 31:131–141. https://doi.org/10.1016/j.hoc.2016.08.004

    Article  PubMed  Google Scholar 

  4. Doroshow DB, Sanmamed MF, Hastings K, Politi K, Rimm DL, Chen L, Melero I, Schalper KA, Herbst RS (2019) Immunotherapy in non-small cell lung cancer: facts and hopes. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-18-1538

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schlom J, Hodge JW, Palena C, Tsang KY, Jochems C, Greiner JW, Farsaci B, Madan RA, Heery CR, Gulley JL (2014) Therapeutic cancer vaccines. Adv Cancer Res 121:67–124. https://doi.org/10.1016/B978-0-12-800249-0.00002-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thomas A, Giaccone G (2015) Why has active immunotherapy not worked in lung cancer? Ann Oncol 26:2213–2220. https://doi.org/10.1093/annonc/mdv323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HMCS, Signori E, Honoki K, Georgakilas AG, Amin A, Helferich WG, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Keith WN, Bilsland A, Bhakta D, Halicka D, Fujii H, Aquilano K, Ashraf SS, Nowsheen S, Yang X, Choi BK, Kwon BS (2015) Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol 35:S185–S198. https://doi.org/10.1016/j.semcancer.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  8. Tuccitto A, Shahaj E, Vergani E, Ferro S, Huber V, Rodolfo M, Castelli C, Rivoltini L, Vallacchi V (2019) Immunosuppressive circuits in tumor microenvironment and their influence on cancer treatment efficacy. Virchows Arch 474:407–420. https://doi.org/10.1007/s00428-018-2477-z

    Article  CAS  PubMed  Google Scholar 

  9. Osinaga E (2007) Expression of cancer-associated simple mucin-type O-glycosylated antigens in parasites. Crit Rev Iubmb Life 59:269–273. https://doi.org/10.1080/15216540601188553

    Article  CAS  Google Scholar 

  10. Darani HY, Yousefi M (2012) Parasites and cancers: parasite antigens as possible targets for cancer immunotherapy. Future Oncol 8:1529–1535. https://doi.org/10.2217/fon.12.155

    Article  CAS  PubMed  Google Scholar 

  11. Coley WB (1928) End results in Hodgkin’s disease and lymphosarcoma treated by the mixed toxins of Erysipelas and Bacillus prodigiosus, alone or combined with radiation. Ann Surg 88:641–667. https://doi.org/10.1097/00000658-192810000-00002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chou R, Selph S, Buckley DI, Fu R, Griffin JC, Grusing S, Gore JL (2017) Intravesical therapy for the treatment of nonmuscle invasive bladder cancer: a systematic review and meta-analysis. J Urol 197:1189–1199. https://doi.org/10.1016/j.juro.2016.12.090

    Article  Google Scholar 

  13. Ubillos L, Freire T, Berriel E, Chiribao ML, Chiale C, Festari MF, Medeiros A, Mazal D, Rondán M, Bollati-Fogolín M, Rabinovich GA, Robello C, Osinaga E (2016) Trypanosoma cruzi extracts elicit protective immune response against chemically induced colon and mammary cancers. Int J Cancer 138:1719–1731. https://doi.org/10.1002/ijc.29910

    Article  CAS  PubMed  Google Scholar 

  14. Baird JR, Byrne KT, Lizotte PH, Toraya-Brown S, Scarlett UK, Alexander MP, Sheen MR, Fox BA, Bzik DJ, Bosenberg M, Mullins DW, Turk MJ, Fiering S (2013) Immune-mediated regression of established B16F10 melanoma by intratumoral injection of attenuated Toxoplasma gondii protects against rechallenge. J Immunol 190:469–478. https://doi.org/10.4049/jimmunol.1201209

    Article  CAS  PubMed  Google Scholar 

  15. Chen L, He Z, Qin L, Li Q, Shi X, Zhao S, Chen L, Zhong N, Chen X (2011) Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity. PLoS ONE 6:e24407. https://doi.org/10.1371/journal.pone.0024407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Akgül H, Tez M, Unal AE, Keşkek M, Sayek I, Ozçelik T (2003) Echinococcus against cancer: why not? Cancer 98(9):1999–2000. https://doi.org/10.1002/cncr.11752

    Article  PubMed  Google Scholar 

  17. Berriel E, Russo S, Monin L, Festari MF, Berois N, Fernández G, Freire T, Osinaga E (2013) Anti-tumor activity of human hydatid cyst fluid in a murine model of colon cancer. Sci World J. https://doi.org/10.1155/2013/230176

    Article  Google Scholar 

  18. Noya V, Bay S, Festari MF, García E, Rodriguez E, Chiale C, Ganneau C, Baleux F, Astrada S, Bollati-Fogolín M, Osinaga E, Freire T (2013) Mucin-like peptides from Echinococcus granulosus induce antitumor activity. Int J Oncol 43:775–784. https://doi.org/10.3892/ijo.2013.2000

    Article  CAS  PubMed  Google Scholar 

  19. Rodríguez E, Noya V, Cervi L, Chiribao ML, Brossard N, Chiale C, Carmona C, Giacomini C, Freire T (2015) Glycans from Fasciola hepatica modulate the host immune response and TLR-induced maturation of dendritic cells. PLoS Negl Trop Dis 9:e0004234. https://doi.org/10.1371/journal.pntd.0004234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tawill S, le Goff L, Ali F, Blaxter M, Allen J (2004) Both free-living and parasitic nematodes induce a characteristic Th2 response that is dependent on the presence of intact glycans. Infect Immun 72:398–407. https://doi.org/10.1128/IAI.72.1.398-407.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klaver EJ, Kuijk LM, Laan LC, Kringel H, van Vliet SJ, Bouma G, Cummings RD, Kraal G, van Die I (2013) Trichuris suis-induced modulation of human dendritic cell function is glycan-mediated. Int J Parasitol 43:191–200. https://doi.org/10.1016/j.ijpara.2012.10.021

    Article  CAS  PubMed  Google Scholar 

  22. Karadayi S, Arslan S, Sumer Z, Turan M, Sumer H, Karadayi K (2013) Does hydatid disease have protective effects against lung cancer? Mol Biol Rep 40:4701–4704. https://doi.org/10.1007/s11033-013-2565-8

    Article  CAS  PubMed  Google Scholar 

  23. Alvarez Errico D, Medeiros A, Míguez M, Casaravilla C, Malgor R, Carmona C, Nieto A, Osinaga E (2001) O-glycosylation in Echinococcus granulosus: identification and characterization of the carcinoma associated Tn antigen. Exp Parasitol 98:100–109. https://doi.org/10.1006/expr.2001.4620

    Article  CAS  PubMed  Google Scholar 

  24. Apostolopoulos V, McKenzie IFC (2017) Cellular mucins: targets for Immunotherapy. Crit Rev Immunol 37:421–437. https://doi.org/10.1615/CritRevImmunol.v37.i2-6.110

    Article  PubMed  Google Scholar 

  25. Kim N, Lee HH, Lee HJ, Choi WS, Lee J, Kim HS (2019) Natural killer cells as a promising therapeutic target for cancer immunotherapy. Arch Pharm Res. https://doi.org/10.1007/s12272-019-01143-y

    Article  PubMed  PubMed Central  Google Scholar 

  26. Soo RA, Chen Z, Yan Teng RS, Tan HL, Iacopetta B, Tai BC, Soong R (2018) Prognostic significance of immune cells in non-small cell lung cancer: meta-analysis. Oncotarget 9:24801–24820. https://doi.org/10.18632/oncotarget.24835

    Article  PubMed  PubMed Central  Google Scholar 

  27. Niederkorn JY, Stewart GL, Ghazizadeh S, Mayhew E, Ross J, Fischer B (1988) Trichinella pseudospiralis larvae express natural killer (NK) cell-associated asialo-GM1 antigen and stimulate pulmonary NK activity. Infect Immun 56:1011–1016

    Article  CAS  Google Scholar 

  28. Babu S, Blauvelt CP, Nutman TB (2007) Filarial parasites induce NK cell activation, type 1 and type 2 cytokine secretion, and subsequent apoptotic cell death. J Immunol 179:2445–2456. https://doi.org/10.4049/jimmunol.179.4.2445

    Article  CAS  PubMed  Google Scholar 

  29. Babu S, Porte P, Klei TR, Shultz LD, Rajan TV (1998) Host NK cells are required for the growth of the human filarial parasite Brugia malayi in mice. J Immunol 161:1428–1432

    CAS  PubMed  Google Scholar 

  30. Hernández A, O’Connor JE, Mir A (1999) Phenotypic analysis of peripheral lymphocyte subpopulations in hydatid patients. Parasitol Res 85:948–950

    Article  Google Scholar 

  31. Korten S, Volkmann L, Saeftel M, Fischer K, Taniguchi M, Fleischer B, Hoerauf A (2002) Expansion of NK cells with reduction of their inhibitory Ly-49A, Ly-49C, and Ly-49G2 receptor-expressing subsets in a murine helminth infection: contribution to parasite control. J Immunol 168:5199–5206. https://doi.org/10.4049/jimmunol.168.10.5199

    Article  CAS  PubMed  Google Scholar 

  32. Mourglia-Ettlin G, Marqués JM, Chabalgoity JA, Dematteis S (2011) Early peritoneal immune response during Echinococcus granulosus establishment displays a biphasic behavior. PLoS Negl Trop Dis 5:e1293. https://doi.org/10.1371/journal.pntd.0001293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Takatsu K (2011) Interleukin-5 and IL-5 receptor in health and diseases. Proc Jpn Acad Ser B Phys Biol Sci 87:463–485. https://doi.org/10.2183/pjab.87.463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rosenberg HF, Dyer KD, Foster PS (2013) Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 13:9–22. https://doi.org/10.1038/nri3341

    Article  CAS  PubMed  Google Scholar 

  35. Capobianco A, Manfredi AA, Monno A, Rovere-Querini P, Rugarli C (2008) Melanoma and lymphoma rejection associated with eosinophil infiltration upon intratumoral injection of dendritic and NK/LAK cells. J Immunother 31:458–465. https://doi.org/10.1097/CJI.0b013e318174a512

    Article  PubMed  Google Scholar 

  36. Carretero R, Sektioglu IM, Garbi N, Salgado OC, Beckhove P, Hämmerling GJ (2015) Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells. Nat Immunol 16:609–617. https://doi.org/10.1038/ni.3159

    Article  CAS  PubMed  Google Scholar 

  37. Buonocore S, Haddou NO, Moore F, Florquin S, Paulart F, Heirman C, Thielemans K, Goldman M, Flamand V (2008) Neutrophil-dependent tumor rejection and priming of tumoricidal CD8+ T cell response induced by dendritic cells overexpressing CD95L. J Leukoc Biol 84:713–720. https://doi.org/10.1189/jlb.0108075

    Article  CAS  PubMed  Google Scholar 

  38. Garley M, Jabłońska E, Dąbrowska D (2016) NETs in cancer. Tumour Biol 37:14355–14361. https://doi.org/10.1007/s13277-016-5328-z

    Article  CAS  PubMed  Google Scholar 

  39. Riganò R, Profumo E, di Felice G, Ortona E, Teggi A, Siracusano A (1995) In vitro production of cytokines by peripheral blood mononuclear cells from hydatid patients. Clin Exp Immunol 99:433–439. https://doi.org/10.1111/j.1365-2249.1995.tb05569.x

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kanan JH, Chain BM (2006) Modulation of dendritic cell differentiation and cytokine secretion by the hydatid cyst fluid of Echinococcus granulosus. Immunology 118:271–278. https://doi.org/10.1111/j.1365-2567.2006.02375.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Flow Cytometry Facility of Institut Pasteur de Montevideo for their assistance.

Funding

This work was supported by Fondo María Viñas, Agencia Nacional de Investigación e Innovación, Uruguay [Number FMV_1_2017_1_136442] (to EO), Fondo ANII-GSK, Agencia Nacional de Investigación e Innovación, Uruguay [Number FSGSK_1_2017_1_145466] (to EO), Programa Grupos de Investigación, CSIC, Universidad de la República, Uruguay [number 908] (to EO), Fondo para la Convergencia Estructural del MERCOSUR [COF 03/11] (to EB, GFG, MC, NB and EO).

Author information

Authors and Affiliations

Authors

Contributions

EO, TF, and EB designed the study. EB, TF, CC, ER, GFG, and NB performed experiments and analyzing the data. MC, GM and EO contributed to analysis and interpretation. TF, EO, and EB analyzed the data and wrote the manuscript. GM, NB and MC critically revised the manuscript. All authors approved the manuscript.

Corresponding author

Correspondence to Eduardo Osinaga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All mice were maintained under specific pathogen-free conditions and used in accordance with protocols established by the Animal Care Committee of the Institut Pasteur de Montevideo, Uruguay. All work with mice was performed according to protocol # 010/12 approved by the Institutional Animal Care Committee and following the National Law of Animal Experimentation (# 18.611).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 203 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berriel, E., Freire, T., Chiale, C. et al. Human hydatid cyst fluid-induced therapeutic anti-cancer immune responses via NK1.1+ cell activation in mice. Cancer Immunol Immunother 70, 3617–3627 (2021). https://doi.org/10.1007/s00262-021-02948-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-02948-x

Keywords

Navigation