Skip to main content

Advertisement

Log in

A study of the possible role of Fab-glycosylated IgG in tumor immunity

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Previously we reported that administration of IgG could inhibit tumor progression in mouse models. At the same time, we also found that some IgGs have glycosylation modifications on their Fab fragments, which may have different biological functions than non-glycosylated IgG. In this study, we employed mouse tumor models to explore the roles of two different forms of IgG, i.e. Fab-glycosylated and Fab-non-glycosylated IgG, in tumor progression. The two types of IgGs were separated with ConA absorption which could react with glycan on the Fab arm but could not access glycan on the Fc fragment. In addition, we performed cytokine array, ELISA, western blotting, immunocytochemistry and other techniques to investigate the possible mechanisms of the actions of Fab-glycosylated IgG in the models. We found that Fab-glycosylated IgG, unlike Fab-non-glycosylated IgG, did not inhibit tumor growth and metastasis in the model. On the contrary, Fab-glycosylated IgG may bind to antigen-bound IgG molecules and macrophages through the glycosidic chain on the Fab fragment to affect antigen–antibody binding and macrophage polarization, which are likely to help tumor cells to evade the immune surveillance. A new mechanism of immune evasion with Fab-glycosylated IgG playing a significant role was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ConA:

Concanavalin A

DSA:

Datura stramonium agglutinin

ELISA:

Enzyme-linked immunosorbent assay

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

GNA:

Galanthus nivalis agglutinin

HRP:

Horseradish peroxidase

ICAM-1:

Intercellular adhesion molecule 1

IFN-γ:

Interferon gamma

IL:

Interleukin

IVIg:

Intravenous immunoglobulin

LDL R:

Low-density lipoprotein receptor

LPS:

Lipopolysaccharide

MAA:

Maackia amurensis agglutinin

MFI:

Mean fluorescence intensity

MMP 9:

Matrix metallopeptidase 9

MR:

Mannose receptor

SNA:

Sambucus nigra agglutinin

TAM:

Tumor-associated macrophages

P-PE:

P-phycoerythrin

PNA:

Peanut agglutinin

References

  1. Poljak RJ (1975) Three-dimensional structure, function and genetic control of immunoglobulins. Nature 256(5516):373–376

    Article  CAS  Google Scholar 

  2. Youings A, Chang SC, Dwek RA, Scragg IG (1996) Site-specific glycosylation of human immunoglobulin G is altered in four rheumatoid arthritis patients. Biochem J 314(Pt 2):621–630

    Article  Google Scholar 

  3. Jefferis R (2005) Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 21(1):11–16. https://doi.org/10.1021/bp040016j

    Article  CAS  PubMed  Google Scholar 

  4. van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y (2016) The emerging importance of IgG Fab glycosylation in immunity. J Immunol 196(4):1435–1441. https://doi.org/10.4049/jimmunol.1502136

    Article  CAS  PubMed  Google Scholar 

  5. Borel IM, Gentile T, Angelucci J, Margni RA, Binaghi RA (1989) Asymmetrically glycosylated IgG isolated from non-immune human sera. Biochem Biophys Acta 990(2):162–164

    Article  CAS  Google Scholar 

  6. Barrientos G, Fuchs D, Schrocksnadel K, Ruecke M, Garcia MG, Klapp BF, Raghupathy R, Miranda S, Arck PC, Blois SM (2009) Low levels of serum asymmetric antibodies as a marker of threatened pregnancy. J Reprod Immunol 79(2):201–210. https://doi.org/10.1016/j.jri.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  7. Gentile T, Borel IM, Angelucci J, Miranda S, Margni RA (1992) Preferential synthesis of asymmetric antibodies in rats immunized with paternal particulate antigens. Effect on pregnancy. J Reprod Immunol 22(2):173–183

    Article  CAS  Google Scholar 

  8. Margni RA, Perdigon G, Abatangelo C, Gentile T, Binaghi RA (1980) Immunobiological behaviour of rabbit precipitating and non-precipitating (co-precipitating) antibodies. Immunology 41(3):681–686

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang T, Chen X, Gu H, Zhao C, Liu X, Yan M, Deng X, Zhang Z, Gu J (2016) Fractionation of Fab glycosylated immunoglobulin G with concanavalin A chromatography unveils new structural properties of the molecule. Oncotarget 7(21):31166–31176. https://doi.org/10.18632/oncotarget.9085

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zenclussen AC, Gentile T, Kortebani G, Mazzolli A, Margni R (2001) Asymmetric antibodies and pregnancy. Am J Reprod Immunol 45(5):289–294

    Article  CAS  Google Scholar 

  11. Chen Y, Tan W, Wang C (2018) Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition. OncoTargets Ther 11:3817–3826. https://doi.org/10.2147/OTT.S168317

    Article  Google Scholar 

  12. Mantovani A, Locati M (2013) Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions. Arterioscler Thromb Vasc Biol 33(7):1478–1483. https://doi.org/10.1161/ATVBAHA.113.300168

    Article  CAS  PubMed  Google Scholar 

  13. Murray PJ (2017) Macrophage polarization. Annu Rev Physiol 79:541–566. https://doi.org/10.1146/annurev-physiol-022516-034339

    Article  CAS  PubMed  Google Scholar 

  14. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  CAS  Google Scholar 

  15. Rhee I (2016) Diverse macrophages polarization in tumor microenvironment. Arch Pharm Res 39(11):1588–1596. https://doi.org/10.1007/s12272-016-0820-y

    Article  CAS  PubMed  Google Scholar 

  16. Amin R, Mourcin F, Uhel F, Pangault C, Ruminy P, Dupre L, Guirriec M, Marchand T, Fest T, Lamy T, Tarte K (2015) DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma. Blood 126(16):1911–1920. https://doi.org/10.1182/blood-2015-04-640912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu Q, Zhang Z, Chen Z, Zhang B, Zhao C, Zhang Y, Zhao C, Deng X, Zhou Y, Wu Y, Gu J (2019) Nonspecific immunoglobulin G is effective in preventing and treating cancer in mice. Cancer Manag Res 11:2073–2085. https://doi.org/10.2147/CMAR.S188172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gu J, Lei Y, Huang Y, Zhao Y, Li J, Huang T, Zhang J, Wang J, Deng X, Chen Z, Korteweg C, Deng R, Yan M, Xu Q, Dong S, Cai M, Luo L, Huang G, Wang Y, Li Q, Lin C, Su M, Yang C, Zhuang Z (2015) Fab fragment glycosylated IgG may play a central role in placental immune evasion. Hum Reprod 30(2):380–391. https://doi.org/10.1093/humrep/deu323

    Article  CAS  PubMed  Google Scholar 

  19. Overdijk MB, Verploegen S, Ortiz Buijsse A, Vink T, Leusen JH, Bleeker WK, Parren PW (2012) Crosstalk between human IgG isotypes and murine effector cells. J Immunol 189(7):3430–3438. https://doi.org/10.4049/jimmunol.1200356

    Article  CAS  PubMed  Google Scholar 

  20. Fishman P, Bar-Yehuda S, Shoenfeld Y (2002) IVIg to prevent tumor metastases (review). Int J Oncol 21(4):875–880

    CAS  PubMed  Google Scholar 

  21. Shoenfeld Y, Fishman P (1999) Gamma-globulin inhibits tumor spread in mice. Int Immunol 11(8):1247–1252

    Article  CAS  Google Scholar 

  22. Li M, Gao CJ (2008) An update on beta2 integrin LFA-1 and ligand ICAM-1 signaling. Zhongguo shi yan xue ye xue za zhi 16(1):213–216

    CAS  PubMed  Google Scholar 

  23. Reimers N, Zafrakas K, Assmann V, Egen C, Riethdorf L, Riethdorf S, Berger J, Ebel S, Janicke F, Sauter G, Pantel K (2004) Expression of extracellular matrix metalloproteases inducer on micrometastatic and primary mammary carcinoma cells. Clin Cancer Res 10(10):3422–3428. https://doi.org/10.1158/1078-0432.CCR-03-0610

    Article  CAS  PubMed  Google Scholar 

  24. Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, Kastelein R, Kolk A, de Waal-Malefyt R, Ottenhoff TH (2004) Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA 101(13):4560–4565. https://doi.org/10.1073/pnas.0400983101

    Article  CAS  PubMed  Google Scholar 

  25. Mannino MH, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y (2015) The paradoxical role of IL-10 in immunity and cancer. Cancer Lett 367(2):103–107. https://doi.org/10.1016/j.canlet.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  26. Gercel-Taylor C, Bazzett LB, Taylor DD (2001) Presence of aberrant tumor-reactive immunoglobulins in the circulation of patients with ovarian cancer. Gynecol Oncol 81(1):71–76. https://doi.org/10.1006/gyno.2000.6102

    Article  CAS  PubMed  Google Scholar 

  27. Kodar K, Stadlmann J, Klaamas K, Sergeyev B, Kurtenkov O (2012) Immunoglobulin G Fc N-glycan profiling in patients with gastric cancer by LC-ESI-MS: relation to tumor progression and survival. Glycoconj J 29(1):57–66. https://doi.org/10.1007/s10719-011-9364-z

    Article  CAS  PubMed  Google Scholar 

  28. Canellada A, Gentile T, Dokmetjian J, Margni RA (2002) Occurrence, properties, and function of asymmetric IgG molecules isolated from non-immune sera. Immunol Investig 31(2):107–120

    Article  CAS  Google Scholar 

  29. Wright A, Tao MH, Kabat EA, Morrison SL (1991) Antibody variable region glycosylation: position effects on antigen binding and carbohydrate structure. EMBO J 10(10):2717–2723

    Article  CAS  Google Scholar 

  30. Coloma MJ, Trinh RK, Martinez AR, Morrison SL (1999) Position effects of variable region carbohydrate on the affinity and in vivo behavior of an anti-(1–>6) dextran antibody. J Immunol 162(4):2162–2170

    CAS  PubMed  Google Scholar 

  31. Schneider D, Duhren-von Minden M, Alkhatib A, Setz C, van Bergen CA, Benkisser-Petersen M, Wilhelm I, Villringer S, Krysov S, Packham G, Zirlik K, Romer W, Buske C, Stevenson FK, Veelken H, Jumaa H (2015) Lectins from opportunistic bacteria interact with acquired variable-region glycans of surface immunoglobulin in follicular lymphoma. Blood 125(21):3287–3296. https://doi.org/10.1182/blood-2014-11-609404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chavele KM, Martinez-Pomares L, Domin J, Pemberton S, Haslam SM, Dell A, Cook HT, Pusey CD, Gordon S, Salama AD (2010) Mannose receptor interacts with Fc receptors and is critical for the development of crescentic glomerulonephritis in mice. J Clin Investig 120(5):1469–1478. https://doi.org/10.1172/JCI41560

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (81872334) and Li Ka Shing Foundation. The authors would like to thank the Laboratory Animal Center and the Center for Core Facilities of Shantou University Medical College for supporting and providing help to this research.

Author information

Authors and Affiliations

Authors

Contributions

JG coordinated the entire project; JG and QX wrote the manuscript; QX, XD, BZ, CZ, TH, YZ, and ZC performed the experiments; QX, BZ, CZ analyzed the data.

Corresponding author

Correspondence to Jiang Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the Medical Animal Care and Welfare Committee of Shantou University Medical College (SUMC 2018-128).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 717 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Deng, X., Zhang, B. et al. A study of the possible role of Fab-glycosylated IgG in tumor immunity. Cancer Immunol Immunother 70, 1841–1851 (2021). https://doi.org/10.1007/s00262-020-02809-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02809-z

Keywords

Navigation