Skip to main content

Advertisement

Log in

Anlotinib optimizes anti-tumor innate immunity to potentiate the therapeutic effect of PD-1 blockade in lung cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Many anti-angiogenic agents have the potential to modulate the tumor microenvironment and improve immunotherapy. Anlotinib has demonstrated anti-tumor efficacy in non-small cell lung cancer (NSCLC) in third-line clinical trials. However, its roles in immune regulation and potentially synergistic anti-tumor effect in combination with immune checkpoint inhibition remain unclear.

Methods

Here, based on a syngeneic lung cancer mouse model, the intratumoral immunological changes post-anlotinib treatment in the model were assessed. Furthermore, it was tested whether anlotinib could enhance the anti-tumor effect of αPD-1 in vivo.

Results

This study shows that anlotinib increased infiltration of the innate immune cells, including natural killer (NK) cells, and antigen-presenting cells (APC), which include M1-like tumor-associated macrophages (TAM) and dendritic cells (DC), whereas the percentage of M2-like TAM was dramatically reduced. Subsequently, when combined with PD-1/PD-L1 (programmed cell death 1/PD-1 ligand 1) blockade, anlotinib conferred significantly synergistic therapeutic benefits.

Conclusions

Overall, these findings describe a role for anlotinib in the innate immune cells in the tumor microenvironment and a potentially synergistic anti-tumor combination with immune checkpoint inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cells

DCs:

Dendritic cells

ICB:

Immune checkpoint blockade

IHC:

Immunohistochemistry

MDSC:

Myeloid-derived suppressor cells

TAM:

Tumor-associated macrophage

TIME:

Tumor immune microenvironment

TKI:

Tyrosine kinase receptor inhibitor

References

  1. Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK (2014) Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14(8):535–546. https://doi.org/10.1038/nrc3775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) GLobal cancer statistics, 2012. CA Cancer J Clin 65(2):87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  3. Torre LA, Siegel RL, Jemal A (2016) Lung cancer statistics. Adv Exp Med Biol 893:1–19. https://doi.org/10.1007/978-3-319-24223-1_1

    Article  PubMed  Google Scholar 

  4. Kris MG, Johnson BE, Berry LD, Kwiatkowski DJ, Iafrate AJ, Wistuba II, Varella-Garcia M, Franklin WA, Aronson SL, Su PF, Shyr Y, Camidge DR, Sequist LV, Glisson BS, Khuri FR, Garon EB, Pao W, Rudin C, Schiller J, Haura EB, Socinski M, Shirai K, Chen H, Giaccone G, Ladanyi M, Kugler K, Minna JD, Bunn PA (2014) Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311(19):1998–2006. https://doi.org/10.1001/jama.2014.3741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. https://doi.org/10.1038/nrc3239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lin B, Song X, Yang D, Bai D, Yao Y, Lu N (2018) Anlotinib inhibits angiogenesis via suppressing the activation of VEGFR2, PDGFRbeta and FGFR1. Gene 654:77–86. https://doi.org/10.1016/j.gene.2018.02.026

    Article  PubMed  CAS  Google Scholar 

  7. Xie C, Wan X, Quan H, Zheng M, Fu L, Li Y, Lou L (2018) Preclinical characterization of anlotinib, a highly potent and selective vascular endothelial growth factor receptor-2 inhibitor. Cancer Sci 109(4):1207–1219. https://doi.org/10.1111/cas.13536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Han B, Li K, Zhao Y, Li B, Cheng Y, Zhou J, Lu Y, Shi Y, Wang Z, Jiang L, Luo Y, Zhang Y, Huang C, Li Q, Wu G (2018) Anlotinib as a third-line therapy in patients with refractory advanced non-small-cell lung cancer: a multicentre, randomised phase II trial (ALTER0302). Br J Cancer 118(5):654–661. https://doi.org/10.1038/bjc.2017.478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Han B, Li K, Wang Q, Zhang L, Shi J, Wang Z, Cheng Y, He J, Shi Y, Zhao Y, Yu H, Zhao Y, Chen W, Luo Y, Wu L, Wang X, Pirker R, Nan K, Jin F, Dong J, Li B, Sun Y (2018) Effect of anlotinib as a third-line or further treatment on overall survival of patients with advanced non-small cell lung cancer: the ALTER 0303 Phase 3 randomized clinical trial. JAMA Oncol 4(11):1569–1575. https://doi.org/10.1001/jamaoncol.2018.3039

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, Santosuosso M, Martin JD, Martin MR, Vianello F, Leblanc P, Munn LL, Huang P, Duda DG, Fukumura D, Jain RK, Poznansky MC (2012) Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci U S A 109(43):17561–17566. https://doi.org/10.1073/pnas.1215397109

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mortara L, Benest AV, Bates DO, Noonan DM (2017) Can the co-dependence of the immune system and angiogenesis facilitate pharmacological targeting of tumours? Curr Opin Pharmacol 35:66–74. https://doi.org/10.1016/j.coph.2017.05.009

    Article  PubMed  CAS  Google Scholar 

  12. De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17(8):457–474. https://doi.org/10.1038/nrc.2017.51

    Article  PubMed  CAS  Google Scholar 

  13. Zhao S, Ren S, Jiang T, Zhu B, Li X, Zhao C, Jia Y, Shi J, Zhang L, Liu X, Qiao M, Chen X, Su C, Yu H, Zhou C, Zhang J, Camidge DR, Hirsch FR (2019) Low-dose apatinib optimizes tumor microenvironment and potentiates antitumor effect of PD-1/PD-L1 blockade in lung cancer. Cancer Immunol Res 7(4):630–643. https://doi.org/10.1158/2326-6066.CIR-17-0640

    Article  PubMed  CAS  Google Scholar 

  14. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhaufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crino L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639. https://doi.org/10.1056/NEJMoa1507643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O'Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR, Investigators K (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833. https://doi.org/10.1056/NEJMoa1606774

    Article  PubMed  CAS  Google Scholar 

  16. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, Cortinovis DL, Leach J, Polikoff J, Barrios C, Kabbinavar F, Frontera OA, De Marinis F, Turna H, Lee JS, Ballinger M, Kowanetz M, He P, Chen DS, Sandler A, Gandara DR, Group OAKS (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389(10066):255–265. https://doi.org/10.1016/S0140-6736(16)32517-X

    Article  PubMed  Google Scholar 

  17. Lee CK, Man J, Lord S, Cooper W, Links M, Gebski V, Herbst RS, Gralla RJ, Mok T, Yang JC (2018) Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: a systematic review and meta-analysis. JAMA Oncol 4(2):210–216. https://doi.org/10.1001/jamaoncol.2017.4427

    Article  PubMed  Google Scholar 

  18. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135. https://doi.org/10.1056/NEJMoa1504627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K, Karadimou A, Badoual C, Tedgui A, Fridman WH, Oudard S (2011) Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 30(1):83–95. https://doi.org/10.1007/s10555-011-9281-4

    Article  PubMed  CAS  Google Scholar 

  20. Manegold C, Dingemans AC, Gray JE, Nakagawa K, Nicolson M, Peters S, Reck M, Wu YL, Brustugun OT, Crino L, Felip E, Fennell D, Garrido P, Huber RM, Marabelle A, Moniuszko M, Mornex F, Novello S, Papotti M, Perol M, Smit EF, Syrigos K, van Meerbeeck JP, van Zandwijk N, Chih-Hsin Yang J, Zhou C, Vokes E (2017) The potential of combined immunotherapy and antiangiogenesis for the synergistic treatment of advanced NSCLC. J Thorac Oncol 12(2):194–207. https://doi.org/10.1016/j.jtho.2016.10.003

    Article  PubMed  Google Scholar 

  21. Chen DS, Hurwitz H (2018) Combinations of bevacizumab with cancer immunotherapy. Cancer J 24(4):193–204. https://doi.org/10.1097/PPO.0000000000000327

    Article  PubMed  CAS  Google Scholar 

  22. Schmittnaegel M, Rigamonti N, Kadioglu E, Cassara A, Wyser Rmili C, Kiialainen A, Kienast Y, Mueller HJ, Ooi CH, Laoui D, De Palma M (2017) Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aak9670

    Article  PubMed  Google Scholar 

  23. Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26(5):605–622. https://doi.org/10.1016/j.ccell.2014.10.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ganss R (2017) Tumour vessel normalization and immune checkpoint blockade: a new synergism. Immunol Cell Biol 95(6):497–498. https://doi.org/10.1038/icb.2017.30

    Article  PubMed  CAS  Google Scholar 

  25. Hamzah J, Jugold M, Kiessling F, Rigby P, Manzur M, Marti HH, Rabie T, Kaden S, Grone HJ, Hammerling GJ, Arnold B, Ganss R (2008) Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453(7193):410–414. https://doi.org/10.1038/nature06868

    Article  PubMed  CAS  Google Scholar 

  26. Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, Sheng K, Dobrolecki LE, Zhang X, Putluri N, Phung TL, Mani SA, Stossi F, Sreekumar A, Mancini MA, Decker WK, Zong C, Lewis MT, Zhang XH (2017) Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 544(7649):250–254. https://doi.org/10.1038/nature21724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino TN, Azimi CS, Scheer AK, Randolph HE, Thompson TW, Zhang L, Iannello A, Mathur N, Jardine KE, Kirn GA, Bell JC, McBurney MW, Raulet DH, Ardolino M (2018) Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest 128(10):4654–4668. https://doi.org/10.1172/JCI99317

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM, Connolly AJ, Weissman IL (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545(7655):495–499. https://doi.org/10.1038/nature22396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lim TS, Chew V, Sieow JL, Goh S, Yeong JP, Soon AL, Ricciardi-Castagnoli P (2016) PD-1 expression on dendritic cells suppresses CD8(+) T cell function and antitumor immunity. Oncoimmunology 5(3):e1085146. https://doi.org/10.1080/2162402X.2015.1085146

    Article  PubMed  CAS  Google Scholar 

  30. Bi J, Tian Z (2019) NK cell dysfunction and checkpoint immunotherapy. Front Immunol 10:1999. https://doi.org/10.3389/fimmu.2019.01999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK (2018) Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol 15(5):325–340. https://doi.org/10.1038/nrclinonc.2018.29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Du Four S, Maenhout SK, Niclou SP, Thielemans K, Neyns B, Aerts JL (2016) Combined VEGFR and CTLA-4 blockade increases the antigen-presenting function of intratumoral DCs and reduces the suppressive capacity of intratumoral MDSCs. Am J Cancer Res 6(11):2514–2531

    PubMed  PubMed Central  Google Scholar 

  33. Lu J, Zhong H, Chu T, Zhang X, Li R, Sun J, Zhong R, Yang Y, Alam MS, Lou Y, Xu J, Zhang Y, Wu J, Li X, Zhao X, Li K, Lu L, Han B (2019) Role of anlotinib-induced CCL2 decrease in anti-angiogenesis and response prediction for nonsmall cell lung cancer therapy. Eur Respir J. https://doi.org/10.1183/13993003.01562-2018

    Article  PubMed  Google Scholar 

  34. Rivera LB, Meyronet D, Hervieu V, Frederick MJ, Bergsland E, Bergers G (2015) Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy. Cell Rep 11(4):577–591. https://doi.org/10.1016/j.celrep.2015.03.055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sato-Kaneko F, Yao S, Ahmadi A, Zhang SS, Hosoya T, Kaneda MM, Varner JA, Pu M, Messer KS, Guiducci C, Coffman RL, Kitaura K, Matsutani T, Suzuki R, Carson DA, Hayashi T, Cohen EE (2017) Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight. https://doi.org/10.1172/jci.insight.93397

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sen T, Rodriguez BL, Chen L, Corte CMD, Morikawa N, Fujimoto J, Cristea S, Nguyen T, Diao L, Li L, Fan Y, Yang Y, Wang J, Glisson BS, Wistuba II, Sage J, Heymach JV, Gibbons DL, Byers LA (2019) Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov 9(5):646–661. https://doi.org/10.1158/2159-8290.CD-18-1020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Huang YX, Chen XT, Guo KY, Li YH, Wu BY, Song CY, He YJ (2017) Sunitinib induces NK-kappaB-dependent NKG2D ligand expression in nasopharyngeal carcinoma and hepatoma cells. J Immunother 40(5):164–174. https://doi.org/10.1097/CJI.0000000000000168

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported in part by grants from the National Natural Science Foundation of China (No. 81703786 and No. 81803914) and from the Tianjin Science and Technology Committee (No. 18JCZDJC36700).

Author information

Authors and Affiliations

Authors

Contributions

YY designed, performed, and analyzed the experiments, and wrote the manuscript. LL, ZJ, and BW performed the experiments. YY, ZJ, and ZP provided the reagents and technical support. ZP designed and edited the manuscript. All the authors were involved in critical revision of the final manuscript.

Corresponding author

Correspondence to Zhanyu Pan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest regarding this article.

Ethical approval

All procedures involving animals were performed according to the Ethics Committee of Tianjin Medical University (Tianjin, China).

Animal source

Female C57BL/6 mice (6–8 weeks old) were purchased from Beijing HFK Bioscience (Beijing, China).

Cell line authentication

LLC (Lewis) murine lung carcinoma cells were purchased via the National Cancer Institute cell bank repository of China, and the cell line was authenticated there. Further, before use, the cell line tested negative for mycoplasma via the Mycoplasma ELISA Kit from Invitrogen (Carlsbad, CA, USA).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, L., Jiang, Z. et al. Anlotinib optimizes anti-tumor innate immunity to potentiate the therapeutic effect of PD-1 blockade in lung cancer. Cancer Immunol Immunother 69, 2523–2532 (2020). https://doi.org/10.1007/s00262-020-02641-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02641-5

Keywords

Navigation