Skip to main content
Log in

Chimeric antigen receptors with human scFvs preferentially induce T cell anti-tumor activity against tumors with high B7H6 expression

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

B7H6 is emerging as a promising tumor antigen that is known to be expressed on a wide array of tumors and is reported to stimulate anti-tumor responses from the immune system. As such, B7H6 presents a good target for tumor-specific immunotherapies. B7H6-specific chimeric antigen receptors (CAR) based on a murine antibody showed successful targeting and elimination of tumors expressing B7H6. However, mouse single chain variable fragments (scFvs) have the potential to induce host anti-CAR responses that may limit efficacy, so human scFvs specific for B7H6 were selected by yeast surface display. In this study, we validate the functionality of these human scFvs when formatted into chimeric antigen receptors. The data indicate that T cells expressing these B7H6-specific human scFvs as CARs induced potent anti-tumor activity in vitro and in vivo against tumors expressing high amounts of B7H6. Importantly, these human scFv-based CARs are sensitive to changes in B7H6 expression which may potentially spare non-tumor cells that express B7H6 and provides the foundation for future clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

B6:

C57BL/6

CAR:

Chimeric antigen receptor

CYP:

Cytoplasmic

H:

Hinge

MFI:

Mean fluorescent intensity

NK:

Natural killer

scFv:

Single-chain fragment variable

TM:

Transmembrane

References

  1. Brandt CS, Baratin M, Yi EC, Kennedy J, Gao Z, Fox B, Haldeman B, Ostrander CD, Kaifu T, Chabannon C, Moretta A, West R, Xu W, Vivier E, Levin SD (2009) The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp Med 206(7):1495–1503. https://doi.org/10.1084/jem.20090681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang T, Wu MR, Sentman CL (2012) An NKp30-based chimeric antigen receptor promotes T cell effector functions and antitumor efficacy in vivo. J Immunol 189(5):2290–2299. https://doi.org/10.4049/jimmunol.1103495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang X, Zhang G, Qin Y, Bai R, Huang J (2014) B7-H6 expression in non-small cell lung cancers. Int J Clin Exp Pathol 7(10):6936–6942

    PubMed  PubMed Central  Google Scholar 

  4. Chen XJ, Shen J, Zhang GB, Chen WC (2014) B7-H6 protein expression has no prognostic significance in human gastric carcinoma. Pathol Oncol Res 20(1):203–207. https://doi.org/10.1007/s12253-013-9686-1

    Article  PubMed  Google Scholar 

  5. Zhou Y, Xu Y, Chen L, Xu B, Wu C, Jiang J (2015) B7-H6 expression correlates with cancer progression and patient’s survival in human ovarian cancer. Int J Clin Exp Pathol 8(8):9428–9433

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu F, Wang J, Ke X (2016) Knockdown of B7-H6 inhibits tumor progression and enhances chemosensitivity in B-cell non-Hodgkin lymphoma. Int J Oncol 48(4):1561–1570. https://doi.org/10.3892/ijo.2016.3393

    Article  CAS  PubMed  Google Scholar 

  7. Li Y, Wang Q, Mariuzza RA (2011) Structure of the human activating natural cytotoxicity receptor NKp30 bound to its tumor cell ligand B7-H6. J Exp Med 208(4):703–714. https://doi.org/10.1084/jem.20102548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matta J, Baratin M, Chiche L, Forel JM, Cognet C, Thomas G, Farnarier C, Piperoglou C, Papazian L, Chaussabel D, Ugolini S, Vely F, Vivier E (2013) Induction of B7-H6, a ligand for the natural killer cell-activating receptor NKp30, in inflammatory conditions. Blood 122(3):394–404. https://doi.org/10.1182/blood-2013-01-481705

    Article  CAS  PubMed  Google Scholar 

  9. Pesce S, Tabellini G, Cantoni C, Patrizi O, Coltrini D, Rampinelli F, Matta J, Vivier E, Moretta A, Parolini S, Marcenaro E (2015) B7-H6-mediated downregulation of NKp30 in NK cells contributes to ovarian carcinoma immune escape. Oncoimmunology 4(4):e1001224. https://doi.org/10.1080/2162402X.2014.1001224

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schlecker E, Fiegler N, Arnold A, Altevogt P, Rose-John S, Moldenhauer G, Sucker A, Paschen A, von Strandmann EP, Textor S, Cerwenka A (2014) Metalloprotease-mediated tumor cell shedding of B7-H6, the ligand of the natural killer cell-activating receptor NKp30. Cancer Res 74(13):3429–3440. https://doi.org/10.1158/0008-5472.CAN-13-3017

    Article  CAS  PubMed  Google Scholar 

  11. Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3(4):388–398. https://doi.org/10.1158/2159-8290.CD-12-0548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gacerez AT, Arellano B, Sentman CL (2016) How chimeric antigen receptor design affects adoptive T cell therapy. J Cell Physiol 231(12):2590–2598. https://doi.org/10.1002/jcp.25419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu MR, Zhang T, DeMars LR, Sentman CL (2015) B7H6-specific chimeric antigen receptors lead to tumor elimination and host antitumor immunity. Gene therapy 22(8):675–684. https://doi.org/10.1038/gt.2015.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hua CK, Gacerez AT, Sentman CL, Ackerman ME (2017) Development of unique cytotoxic chimeric antigen receptors based on human scFv targeting B7H6. Protein Eng Design Sel: PEDS 30(10):713–721. https://doi.org/10.1093/protein/gzx051

    Article  Google Scholar 

  15. Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JM, Yeung YA, Cochran JR, Heinzelman P, Colby D, Swers J, Graff C, Wiley HS, Wittrup KD (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21(2):163–170. https://doi.org/10.1038/nbt785

    Article  CAS  PubMed  Google Scholar 

  16. Joyce MG, Tran P, Zhuravleva MA, Jaw J, Colonna M, Sun PD (2011) Crystal structure of human natural cytotoxicity receptor NKp30 and identification of its ligand binding site. Proc Natl Acad Sci USA 108(15):6223–6228. https://doi.org/10.1073/pnas.1100622108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fitzer-Attas CJ, Schindler DG, Waks T, Eshhar Z (1998) Harnessing Syk family tyrosine kinases as signaling domains for chimeric single chain of the variable domain receptors: optimal design for T cell activation. J Immunol 160(1):145–154

    CAS  PubMed  Google Scholar 

  18. Hombach A, Heuser C, Gerken M, Fischer B, Lewalter K, Diehl V, Pohl C, Abken H (2000) T cell activation by recombinant FcepsilonRI gamma-chain immune receptors: an extracellular spacer domain impairs antigen-dependent T cell activation but not antigen recognition. Gene Therapy 7(12):1067–1075. https://doi.org/10.1038/sj.gt.3301195

    Article  CAS  PubMed  Google Scholar 

  19. Hudecek M, Lupo-Stanghellini MT, Kosasih PL, Sommermeyer D, Jensen MC, Rader C, Riddell SR (2013) Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res 19(12):3153–3164. https://doi.org/10.1158/1078-0432.CCR-13-0330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kunkele A, Johnson AJ, Rolczynski LS, Chang CA, Hoglund V, Kelly-Spratt KS, Jensen MC (2015) Functional tuning of CARs reveals signaling threshold above which CD8 + CTL antitumor potency is attenuated due to cell Fas-FasL-Dependent AICD. Cancer Immunol Res 3(4):368–379. https://doi.org/10.1158/2326-6066.CIR-14-0200

    Article  PubMed  Google Scholar 

  21. Guest RD, Hawkins RE, Kirillova N, Cheadle EJ, Arnold J, O’Neill A, Irlam J, Chester KA, Kemshead JT, Shaw DM, Embleton MJ, Stern PL, Gilham DE (2005) The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J Immunother 28(3):203–211

    Article  CAS  PubMed  Google Scholar 

  22. Chmielewski M, Hombach AA, Abken H (2011) CD28 cosignalling does not affect the activation threshold in a chimeric antigen receptor-redirected T-cell attack. Gene Therapy 18(1):62–72. https://doi.org/10.1038/gt.2010.127

    Article  CAS  PubMed  Google Scholar 

  23. Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM, Pastan IH, Dimitrov DS, Morgan RA, FitzGerald DJ, Barrett DM, Wayne AS, Mackall CL, Orentas RJ (2013) Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 121(7):1165–1174. https://doi.org/10.1182/blood-2012-06-438002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hudecek M, Sommermeyer D, Kosasih PL, Silva-Benedict A, Liu L, Rader C, Jensen MC, Riddell SR (2015) The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res 3(2):125–135. https://doi.org/10.1158/2326-6066.CIR-14-0127

    Article  CAS  PubMed  Google Scholar 

  25. Liu X, Jiang S, Fang C, Yang S, Olalere D, Pequignot EC, Cogdill AP, Li N, Ramones M, Granda B, Zhou L, Loew A, Young RM, June CH, Zhao Y (2015) Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res 75(17):3596–3607. https://doi.org/10.1158/0008-5472.CAN-15-0159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lynn RC, Feng Y, Schutsky K, Poussin M, Kalota A, Dimitrov DS, Powell DJ Jr (2016) High-affinity FRbeta-specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity. Leukemia 30(6):1355–1364. https://doi.org/10.1038/leu.2016.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Watanabe K, Terakura S, Martens AC, van Meerten T, Uchiyama S, Imai M, Sakemura R, Goto T, Hanajiri R, Imahashi N, Shimada K, Tomita A, Kiyoi H, Nishida T, Naoe T, Murata M (2015) Target antigen density governs the efficacy of anti-CD20-CD28-CD3 zeta chimeric antigen receptor-modified effector CD8 + T cells. J Immunol 194(3):911–920. https://doi.org/10.4049/jimmunol.1402346

    Article  CAS  PubMed  Google Scholar 

  28. Boomer JS, Green JM (2010) An enigmatic tail of CD28 signaling. Cold Spring Harbor Perspect Biol 2(8):a002436. https://doi.org/10.1101/cshperspect.a002436

    Article  Google Scholar 

  29. Upshaw JL, Leibson PJ (2006) NKG2D-mediated activation of cytotoxic lymphocytes: unique signaling pathways and distinct functional outcomes. Semin Immunol 18(3):167–175. https://doi.org/10.1016/j.smim.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  30. Wang C, Lin GH, McPherson AJ, Watts TH (2009) Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev 229(1):192–215. https://doi.org/10.1111/j.1600-065X.2009.00765.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the Center for Comparative Medicine Research for assistance with animal care and the Shared Molecular Biology Resource at the Norris Cotton Cancer Center for sequencing. The authors also thank the National Cancer Institute Biological Resource Branch for recombinant human IL-2.

Funding

This work was supported by funds from The Elmer R. Pfefferkorn and Allan U. Munck Education and Research Fund, the Center of Biomedical Research Excellence (8P30GM103415), and the Center for Synthetic Immunity.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the design and interpretation of experiments and the writing and editing of the manuscript. Albert T. Gacerez was responsible for acquisition of data.

Corresponding author

Correspondence to Charles L. Sentman.

Ethics declarations

Conflict of interest

All authors have patent applications in antibody-based therapies and cell engineering. These conflicts are managed under the policies of Dartmouth College.

Ethical Approval and ethical standards

All procedures involving mice were in accordance with the ethical standards set forth by the Dartmouth College’s Institution Animal Care and Use Committee.

Animal source

C57BL/6 (B6) mice from Charles River.

Cell line authentication

ATCC authenticated K562 on August 25, 2016 and SH-SY5Y on October 27, 2016. Murine cell lines were obtained from 2001 to 2006. RMA cell lines were obtained from Michael Bennett (UT Southwestern Medical Center) and B16F10 cell lines were obtained from Richard Barth (Geisel School of Medicine at Dartmouth).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gacerez, A.T., Hua, C.K., Ackerman, M.E. et al. Chimeric antigen receptors with human scFvs preferentially induce T cell anti-tumor activity against tumors with high B7H6 expression. Cancer Immunol Immunother 67, 749–759 (2018). https://doi.org/10.1007/s00262-018-2124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2124-1

Keywords

Navigation