Skip to main content

Advertisement

Log in

Targeting and suppression of HER3-positive breast cancer by T lymphocytes expressing a heregulin chimeric antigen receptor

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Chimeric antigen receptor-modulated T lymphocytes (CAR-T) have emerged as a powerful tool for arousing anticancer immunity. Endogenous ligands for tumor antigen may outperform single-chain variable fragments to serve as a component of CARs with high cancer recognition efficacy and minimized immunogenicity. As heterodimerization and signaling partners for human epidermal growth factor receptor 2 (HER2), HER3/HER4 has been implicated in tumorigenic signaling and therapeutic resistance of breast cancer. In this study, we engineered T cells with a CAR consisting of the extracellular domain of heregulin-1β (HRG1β) that is a natural ligand for HER3/HER4, and evaluated the specific cytotoxicity of these CAR-T cells in cultured HER3 positive breast cancer cells and xenograft tumors. Our results showed that HRG1β-CAR was successfully constructed, and T cells were transduced at a rate of 50%. The CAR-T cells specifically recognized and killed HER3-overexpressing breast cancer cells SK-BR-3 and BT-474 in vitro, and displayed potent tumoricidal effect on SK-BR-3 xenograft tumor models. Our results suggest that HRG1β-based CAR-T cells effectively suppress breast cancer driven by HER family receptors, and may provide a novel strategy to overcome cancer resistance to HER2-targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALL:

Acute lymphoblastic leukemia

ARIA:

Acetylcholine receptor-inducing activity

CFSE:

Carboxyfluorescein succinimidyl ester

CLL:

Chronic lymphocytic leukemia

EGF:

Epidermal growth factor

HRG:

Heregulin

HUVEC:

Human umbilical vein endothelial cell

NDF:

Neu differentiation factor

NRG:

Neuregulin

PI:

Propidium iodide

PVDF:

Polyvinylidene fluoride

qRT-PCR:

Quantitative real-time polymerase chain reaction

RT:

Room temperature

SEM:

Standard error of mean

SiRNA:

Small interfering RNA

SMDF:

Sensory and motor neurons induced factor

References

  1. Kochenderfer JN, Rosenberg SA (2013) Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol 10(5):267–276. https://doi.org/10.1038/nrclinonc.2013.46

    Article  CAS  PubMed  Google Scholar 

  2. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518. https://doi.org/10.1056/NEJMoa1215134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, Mahnke YD, Melenhorst JJ, Rheingold SR, Shen A, Teachey DT, Levine BL, June CH, Porter DL, Grupp SA (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517. https://doi.org/10.1056/NEJMoa1407222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Tschernia N, Yuan C, Zhang H, Zhang L, Rosenberg SA, Wayne AS, Mackall CL (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385(9967):517–528. https://doi.org/10.1016/s0140-6736(14)61403-3

    Article  CAS  PubMed  Google Scholar 

  5. Gilham DE, Debets R, Pule M, Hawkins RE, Abken H (2012) CAR-T cells and solid tumors: tuning T cells to challenge an inveterate foe. Trends Mol Med 18(7):377–384. https://doi.org/10.1016/j.molmed.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  6. Posey AD Jr, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, Stone JD, Madsen TD, Schreiber K, Haines KM, Cogdill AP, Chen TJ, Song D, Scholler J, Kranz DM, Feldman MD, Young R, Keith B, Schreiber H, Clausen H, Johnson LA, June CH (2016) Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44(6):1444–1454. https://doi.org/10.1016/j.immuni.2016.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burga RA, Thorn M, Point GR, Guha P, Nguyen CT, Licata LA, DeMatteo RP, Ayala A, Espat NJ, Junghans RP, Katz SC (2015) Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother 64(7):817–829. https://doi.org/10.1007/s00262-015-1692-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dai H, Wang Y, Lu X, Han W (2016) Chimeric antigen receptors modified T-cells for cancer therapy. J Natl Cancer Inst 108(7). https://doi.org/10.1093/jnci/djv439

  9. Fesnak AD, June CH, Levine BL (2016) Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer 16(9):566–581. https://doi.org/10.1038/nrc.2016.97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Srivastava S, Riddell SR (2015) Engineering CAR-T cells: design concepts. Trends Immunol 36(8):494–502. https://doi.org/10.1016/j.it.2015.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hammill JA, VanSeggelen H, Helsen CW, Denisova GF, Evelegh C, Tantalo DG, Bassett JD, Bramson JL (2015) Designed ankyrin repeat proteins are effective targeting elements for chimeric antigen receptors. J Immunother Cancer 3:55. https://doi.org/10.1186/s40425-015-0099-4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Breuleux M (2007) Role of heregulin in human cancer. Cell Mol Life Sci 64(18):2358–2377. https://doi.org/10.1007/s00018-007-7120-0

    Article  CAS  PubMed  Google Scholar 

  13. Batlevi CL, Matsuki E, Brentjens RJ, Younes A (2016) Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol 13(1):25–40. https://doi.org/10.1038/nrclinonc.2015.187

    Article  CAS  PubMed  Google Scholar 

  14. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13(5):273–290. https://doi.org/10.1038/nrclinonc.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bachireddy P, Burkhardt UE, Rajasagi M, Wu CJ (2015) Haematological malignancies: at the forefront of immunotherapeutic innovation. Nat Rev Cancer 15(4):201–215. https://doi.org/10.1038/nrc3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kudo K, Imai C, Lorenzini P, Kamiya T, Kono K, Davidoff AM, Chng WJ, Campana D (2014) T lymphocytes expressing a CD16 signaling receptor exert antibody-dependent cancer cell killing. Cancer Res 74(1):93–103. https://doi.org/10.1158/0008-5472.CAN-13-1365

    Article  CAS  PubMed  Google Scholar 

  17. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287. https://doi.org/10.1038/nrc3236

    Article  CAS  PubMed  Google Scholar 

  18. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4):237–251. https://doi.org/10.1038/nrc3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Keulenaer GW, Doggen K, Lemmens K (2010) The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy. Circ Res 106(1):35–46. https://doi.org/10.1161/CIRCRESAHA.109.205906

    Article  PubMed  Google Scholar 

  20. Hegde M, Mukherjee M, Grada Z, Pignata A, Landi D, Navai SA, Wakefield A, Fousek K, Bielamowicz K, Chow KK, Brawley VS, Byrd TT, Krebs S, Gottschalk S, Wels WS, Baker ML, Dotti G, Mamonkin M, Brenner MK, Orange JS, Ahmed N (2016) Tandem CAR T cells targeting HER2 and IL13Ralpha2 mitigate tumor antigen escape. J Clin Invest 126(8):3036–3052. https://doi.org/10.1172/JCI83416

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wilson TR, Lee DY, Berry L, Shames DS, Settleman J (2011) Neuregulin-1-mediated autocrine signaling underlies sensitivity to HER2 kinase inhibitors in a subset of human cancers. Cancer Cell 20(2):158–172. https://doi.org/10.1016/j.ccr.2011.07.011

    Article  CAS  PubMed  Google Scholar 

  22. Odiete O, Hill MF, Sawyer DB (2012) Neuregulin in cardiovascular development and disease. Circ Res 111(10):1376–1385. https://doi.org/10.1161/CIRCRESAHA.112.267286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Willem M (2016) Proteolytic processing of neuregulin-1. Brain Res Bull 126(Pt 2):178–182. https://doi.org/10.1016/j.brainresbull.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  24. Altenschmidt U, Kahl R, Moritz D, Schnierle BS, Gerstmayer B, Wels W, Groner B (1996) Cytolysis of tumor cells expressing the Neu/erbB-2, erbB-3, and erbB-4 receptors by genetically targeted naive T lymphocytes. Clin Cancer Res 2(6):11

    Google Scholar 

  25. Muniappan ABB, Lebkowski J, Talib S (2000) Ligand-mediated cytolysis of tumor cells: use of heregulin-zeta chimeras to redirect cytotoxic T lymphocytes. Cancer Gene Ther 7(1):128–134

    Article  CAS  PubMed  Google Scholar 

  26. Amin DN, Campbell MR, Moasser MM (2010) The role of HER3, the unpretentious member of the HER family, in cancer biology and cancer therapeutics. Semin Cell Dev Biol 21(9):944–950. https://doi.org/10.1016/j.semcdb.2010.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davies DM, Foster J, Van Der Stegen SJ, Parente-Pereira AC, Chiapero-Stanke L, Delinassios GJ, Burbridge SE, Kao V, Liu Z, Bosshard-Carter L, Van Schalkwyk MC, Box C, Eccles SA, Mather SJ, Wilkie S, Maher J (2012) Flexible targeting of ErbB dimers that drive tumorigenesis by using genetically engineered T cells. Mol Med 18:565–576. https://doi.org/10.2119/molmed.2011.00493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roybal KT, Williams JZ, Morsut L, Rupp LJ, Kolinko I, Choe JH, Walker WJ, McNally KA, Lim WA (2016) Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell 167(2):419–432.e416. https://doi.org/10.1016/j.cell.2016.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sackstein R, Schatton T, Barthel SR (2017) T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. Lab Invest 97(6):669–697. https://doi.org/10.1038/labinvest.2017.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Sciences Foundation of China (No. 81630069 and 81272646).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to An-Gang Yang or Lin-Tao Jia.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, BL., Yan, B., Zheng, GX. et al. Targeting and suppression of HER3-positive breast cancer by T lymphocytes expressing a heregulin chimeric antigen receptor. Cancer Immunol Immunother 67, 393–401 (2018). https://doi.org/10.1007/s00262-017-2089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2089-5

Keywords

Navigation