Skip to main content

Advertisement

Log in

Cancer/testis antigens expression and autologous serological response in a set of Brazilian non-Hodgkin’s lymphoma patients

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Based on their tumor-associated expression pattern, cancer/testis antigens (CTAs) are considered potential targets for cancer immunotherapy. We aim to evaluate the expression of CTAs in non-Hodgkin’s lymphoma (NHL) samples and the ability of these patients to elicit spontaneous humoral immune response against CTAs.

Methods

Expression of MAGE-A family, CT7/MAGE-C1, CT10/MAGE-C2, GAGE and NY-ESO-1 was analyzed by immunohistochemistry in a tissue microarray generated from 106 NHL archival cases. The humoral response against 19 CTAs was tested in 97 untreated NHL serum samples using ELISA technique.

Results

11.3 % of NHL tumor samples expressed at least 1 CTA. MAGE-A family (6.6 %), GAGE (5.7 %) and NY-ESO-1(4.7 %) were the most frequently expressed antigens. We found no statistically significant correlation between CTA positivity and clinical parameters such as NHL histological subtype, Ann Arbor stage, international prognostic index score, response to treatment and overall survival. Humoral response against at least 1 CTA was observed in 16.5 % of NHL serum samples. However, overall seroreactivity was low, and strong titers (>1:1000) were observed in only two diffuse large B-cell lymphomas patients against CT45.

Conclusion

Our findings are in agreement with most of published studies in this field to date and suggest an overall low expression of CTAs in NHL patients. However, as many new CTAs have been described recently and some of them are found to be highly expressed in NHL cell lines and tumor samples, further studies exploring the expression of different panels of CTAs are needed to evaluate their role as candidates for immunotherapy in NHL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Caballero OL, Chen YT (2009) Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci 100(11):2014–2021

    Article  PubMed  CAS  Google Scholar 

  2. Almeida LG, Sakabe NJ, de Oliveira AR et al (2009) CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens. Nucleic Acids Res 37:D816–D819

    Article  PubMed  CAS  Google Scholar 

  3. Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5:615–625

    Article  PubMed  CAS  Google Scholar 

  4. Tureci O, Sahin U, Zwick C et al (1998) Identification of a meiosis-specific protein as a member of the class of cancer/testis antigens. Proc Natl Acad Sci U S A 95:5211–5216

    Article  PubMed  CAS  Google Scholar 

  5. Ono T, Kurashige T, Harada N et al (2001) Identification of proacrosin binding protein sp32 precursor as a human cancer/testis antigen. Proc Natl Acad Sci U S A 98:3282–3287

    Article  PubMed  CAS  Google Scholar 

  6. Romanienko PJ, Camerini-Otero RD (1999) Cloning, characterization, and localization of mouse and human SPO11. Genomics 61:156–169

    Article  PubMed  CAS  Google Scholar 

  7. Loukinov DI, Pugacheva E, Vatolin S et al (2002) BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci U S A 99:6806–6811

    Article  PubMed  CAS  Google Scholar 

  8. Atanackovic D, Hildebrandt Y, Jadczak A et al (2010) Cancer-testis antigens MAGE-C1/CT7 and MAGE-A3 promote the survival of multiple myeloma cells. Haematologica 95(5):785–793

    Article  PubMed  CAS  Google Scholar 

  9. Zhu X, Asa SL, Ezzat S (2008) Fibroblast growth factor 2 and estrogen control the balance of histone 3 modifications targeting MAGE-A3 in pituitary neoplasia. Clin Cancer Res 14:1984–1996

    Article  PubMed  CAS  Google Scholar 

  10. Yang B, O’Herrin SM, Wu J et al (2007) MAGE-A, MAGE-B, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res 67:9954–9962

    Article  PubMed  CAS  Google Scholar 

  11. Peikert T, Specks U, Farver C et al (2006) Melanoma antigen A4 is expressed in non-small cell lung cancers and promotes apoptosis. Cancer Res 66:4693–4700

    Article  PubMed  CAS  Google Scholar 

  12. Monte M, Simonatto M, Peche LY et al (2006) MAGE-A tumor antigens target p53 transactivation function through histone deacetylase recruitment and confer resistance to chemotherapeutic agents. Proc Natl Acad Sci U S A 103:11160–11165

    Article  PubMed  CAS  Google Scholar 

  13. Bai S, He B, Wilson EM (2005) Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction. Mol Cell Biol 25:1238–1257

    Article  PubMed  CAS  Google Scholar 

  14. Nagao T, Higashitsuji H, Nonoguchi K et al (2003) MAGE-A4 interacts with the liver oncoprotein gankyrin and suppresses its tumorigenic activity. J Biol Chem 278:10668–10674

    Article  PubMed  CAS  Google Scholar 

  15. Cilensek ZM, Yehiely F, Kular RK et al (2002) A member of the GAGE family of tumor antigens is an anti-apoptotic gene that confers resistance to Fas/CD95/APO-1, interferon-gamma, taxol and gamma-irradiation. Cancer Biol Ther 1:380–387

    Article  PubMed  CAS  Google Scholar 

  16. Oi S, Natsume A, Ito M et al (2009) Synergistic induction of NY-ESO-1 antigen expression by a novel histone deacetylase inhibitor, valproic acid, with 5-aza-2′-deoxycytidine in glioma cells. J Neurooncol 92:15–22

    Article  PubMed  CAS  Google Scholar 

  17. Sigalotti L, Fratta E, Coral S et al (2004) Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2′-deoxycytidine. Cancer Res 64:9167–9171

    Article  PubMed  CAS  Google Scholar 

  18. De Smet C, Lurquin C, Lethe B et al (1999) DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 19:7327–7335

    PubMed  Google Scholar 

  19. Andrade VC, Vettore AL, Felix RS et al (2008) Prognostic impact of cancer/testis antigen expression in advanced stage multiple myeloma patients. Cancer Immun 8:2

    PubMed  Google Scholar 

  20. Jungbluth AA, Ely S, DiLiberto M et al (2005) The cancer-testis antigens CT7 (MAGE-C1) and MAGE-A3/6 are commonly expressed in multiple myeloma and correlate with plasma-cell proliferation. Blood 106:167–174

    Article  PubMed  CAS  Google Scholar 

  21. Chen YT, Chadburn A, Lee P et al (2010) Expression of cancer testis antigen CT45 in classical Hodgkin lymphoma and other B-cell lymphomas. Proc Natl Acad Sci U S A 107(7):3093–3098

    Article  PubMed  CAS  Google Scholar 

  22. Heidebrecht HJ, Claviez A, Kruse ML et al (2006) Characterization and expression of CT45 in Hodgkin’s lymphoma. Clin Cancer Res 12:4804–4811

    Article  PubMed  CAS  Google Scholar 

  23. Velazquez EF, Jungbluth AA, Yancovitz M et al (2007) Expression of the cancer/testis antigen NY-ESO-1 in primary and metastatic malignant melanoma (MM)—correlation with prognostic factors. Cancer Immun 7:11

    PubMed  Google Scholar 

  24. Goydos JS, Patel M, Shih W (2001) NY-ESO-1 and CTp11 expression may correlate with stage of progression in melanoma. J Surg Res 98:76–80

    Article  PubMed  CAS  Google Scholar 

  25. Suyama T, Shiraishi T, Zeng Y et al (2010) Expression of cancer/testis antigens in prostate cancer is associated with disease progression. Prostate 70(16):1778–1787

    PubMed  CAS  Google Scholar 

  26. Riener MO, Wild PJ, Soll C et al (2009) Frequent expression of the novel cancer testis antigen MAGE-C2/CT-10 in hepatocellular carcinoma. Int J Cancer 124:352–357

    Article  PubMed  CAS  Google Scholar 

  27. Atanackovic D, Luetkens T, Hildebrandt Y et al (2009) Longitudinal analysis and prognostic effect of cancer-testis antigen expression in multiple myeloma. Clin Cancer Res 15:1343–1352

    Article  PubMed  CAS  Google Scholar 

  28. Perez D, Herrmann T, Jungbluth AA et al (2008) Cancer testis antigen expression in gastrointestinal stromal tumors: new markers for early recurrence. Int J Cancer 123(7):1551–1555

    Article  PubMed  CAS  Google Scholar 

  29. Bellati F, Napoletano C, Tarquini E et al (2007) Cancer testis antigen expression in primary and recurrent vulvar cancer: association with prognostic factors. Eur J Cancer 43(17):2621–2627

    Article  PubMed  CAS  Google Scholar 

  30. Kim J, Reber HA, Hines OJ et al (2006) The clinical significance of MAGEA3 expression in pancreatic cancer. Int J Cancer 118:2269–2275

    Article  PubMed  CAS  Google Scholar 

  31. Yakirevich E, Sabo E, Lavie O et al (2003) Expression of the MAGE-A4 and NY-ESO-1 cancer-testis antigens in serous ovarian neoplasms. Clin Cancer Res 9:6453–6460

    PubMed  CAS  Google Scholar 

  32. Duan Z, Duan Y, Lamendola DE et al (2003) Overexpression of MAGE/GAGE genes in paclitaxel/doxorubicin-resistant human cancer cell lines. Clin Cancer Res 9:2778–2785

    PubMed  CAS  Google Scholar 

  33. Xie X, Wacker HH, Huang S et al (2003) Differential expression of cancer testis genes in histological subtypes of non-Hodgkin’s lymphomas. Clin Cancer Res 9(1):167–173

    PubMed  CAS  Google Scholar 

  34. Ait-Tahar K, Liggins AP, Collins GP et al (2009) Cytolytic T-cell response to the PASD1 cancer testis antigen in patients with diffuse large B-cell lymphoma. Br J Haematol 146(4):396–407

    Article  PubMed  CAS  Google Scholar 

  35. Cooper CD, Liggins AP, Ait-Tahar K et al (2006) PASD1, a DLBCL-associated cancer testis antigen and candidate for lymphoma immunotherapy. Leukemia 20(12):2172–2174

    Article  PubMed  CAS  Google Scholar 

  36. Liggins AP, Brown PJ, Asker K et al (2004) A novel diffuse large B-cell lymphoma-associated cancer testis antigen encoding a PAS domain protein. Br J Cancer 91(1):141–149

    Article  PubMed  CAS  Google Scholar 

  37. NCCN (2007) National Comprehensive Cancer Network. The complete library of practice guidelines in oncology (online). Version 2007. Available from. URL:http://www.nccn.org

  38. Jaffe E, Harris NL, Stein H et al (2008) World health organization classification of tumours. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon

    Google Scholar 

  39. Kononen J, Bubendorf L, Kallioniemi A et al (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847

    Article  PubMed  CAS  Google Scholar 

  40. Hedvat CV, Hegde A, Chaganti RS et al (2002) Application of tissue microarray technology to the study of non-Hodgkin’s and Hodgkin’s lymphoma. Hum Pathol 33:968–974

    Article  PubMed  Google Scholar 

  41. Chen YT, Stockert E, Chen Y et al (1994) Identification of the MAGE-1 gene product by monoclonal and polyclonal antibodies. Proc Natl Acad Sci U S A 91(3):1004–1008

    Article  PubMed  CAS  Google Scholar 

  42. Jungbluth AA, Stockert E, Chen YT et al (2000) Monoclonal antibody MA454 reveals a heterogeneous expression pattern of MAGE-1 antigen in formalin-fixed paraffin embedded lung tumours. Br J Cancer 83(4):493–497

    Article  PubMed  CAS  Google Scholar 

  43. Dhodapkar MV, Osman K, Teruya-Feldstein J et al (2003) Expression of cancer/testis (CT) antigens MAGE-A1, MAGE-A3, MAGE-A4, CT-7, and NY-ESO-1 in malignant gammopathies is heterogeneous and correlates with site, stage and risk status of disease. Cancer Immun 23(3):9

    Google Scholar 

  44. Nelson PT, Zhang PJ, Spagnoli GC et al (2007) Cancer/testis (CT) antigens are expressed in fetal ovary. Cancer Immun 12(7):1

    Google Scholar 

  45. Sharma P, Shen Y, Wen S et al (2006) Cancer-testis antigens: expression and correlation with survival in human urothelial carcinoma. Clin Cancer Res 12(18):5442–5447

    Article  PubMed  CAS  Google Scholar 

  46. Oba-Shinjo SM, Caballero OL, Jungbluth AA et al (2008) Cancer-testis (CT) antigen expression in medulloblastoma. Cancer Immun 8:7

    PubMed  Google Scholar 

  47. Zhuang R, Zhu Y, Fang L et al (2006) Generation of monoclonal antibodies to cancer/testis (CT) antigen CT10/MAGE-C2. Cancer Immun 6:7

    PubMed  Google Scholar 

  48. Vaughan HA, Svobodova S, Macgregor D et al (2004) Immunohistochemical and molecular analysis of human melanomas for expression of the human cancer-testis antigens NY-ESO-1 and LAGE-1. Clin Cancer Res 10(24):8396–8404

    Article  PubMed  CAS  Google Scholar 

  49. Gnjatic S, Old LJ, Chen YT (2009) Autoantibodies against cancer antigens. Methods Mol Biol 520:11–19

    Article  PubMed  CAS  Google Scholar 

  50. Geldmacher A, Freier A, Losch FO et al (2011) Therapeutic vaccination for cancer immunotherapy: antigen selection and clinical responses. Hum Vaccin 7:115–119

    Article  PubMed  CAS  Google Scholar 

  51. Palucka K, Ueno H, Fay J et al (2011) Dendritic cells and immunity against cancer. Int J Med 269(1):64–73

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants from CAPES (RJI) and CNPq (GWBC).

Conflict of interest

The authors do not have any financial or non-financial competing interests for publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisele W. B. Colleoni.

Additional information

Riguel J. Inaoka and Achim A. Jungbluth are contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inaoka, R.J., Jungbluth, A.A., Gnjatic, S. et al. Cancer/testis antigens expression and autologous serological response in a set of Brazilian non-Hodgkin’s lymphoma patients. Cancer Immunol Immunother 61, 2207–2214 (2012). https://doi.org/10.1007/s00262-012-1285-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1285-6

Keywords