Skip to main content

Advertisement

Log in

CTL recognition of a novel HLA-A*0201-binding peptide derived from glioblastoma multiforme tumor cells

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Genetic instability of tumor cells can result in translation of proteins that are out of frame, resulting in expression of neopeptides. These neopeptides are not self-proteins and therefore should be immunogenic. By eluting peptides from human glioblastoma multiforme (GBM) tumor cell surfaces and subjecting them to tandem mass spectrometry, we identified a novel peptide (KLWGLTPKVTPS) corresponding to a frameshift in the 3′ beta-hydroxysteroid dehydrogenase type 7 (HSD3B7) gene. HLA-binding algorithms predicted that a 9-amino acid sequence embedded in this peptide would bind to HLA-A*0201. We confirmed this prediction using an HLA-A*0201 refolding assay followed by live cell relative affinity assays, but also showed that the 12-mer binds to HLA-A*0201. Based on the 9-mer sequence, optimized peptide ligands (OPL) were designed and tested for their affinities to HLA-A*0201 and their abilities to elicit anti-peptide and CTL capable of killing GBM in vitro. Wild-type peptides as well as OPL induced anti-peptide CTL as measured by IFN-γ ELISPOTS. These CTL also killed GBM tumor cells in chromium-51 release assays. This study reports a new CTL target in GBM and further substantiates the concept that rational design and testing of multiple peptides for the same T-cell epitope elicits a broader response among different individuals than single peptide immunization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hou LC, Veeravagu A, Hsu AR, Tse VC (2006) Recurrent glioblastoma multiforme: a review of natural history and management options. Neurosurg Focus 20:E5

    Article  PubMed  Google Scholar 

  2. Laws ER, Parney IF, Huang W et al (2003) Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J Neurosurg 99:467–473

    Article  PubMed  Google Scholar 

  3. Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54:187–207

    Article  PubMed  CAS  Google Scholar 

  4. Antwi K, Hanavan PD, Myers CE, Ruiz YW, Thompson EJ, Lake DF (2009) Proteomic identification of an MHC-binding peptidome from pancreas and breast cancer cell lines. Mol Immunol 46:2931–2937

    Article  PubMed  CAS  Google Scholar 

  5. Stryhn A, Pedersen LO, Holm A, Buus S (2000) Longer peptide can be accommodated in the MHC class I binding site by a protrusion mechanism. Eur J Immunol 30:3089–3099

    Article  PubMed  CAS  Google Scholar 

  6. Gebreselassie D, Spiegel H, Vukmanovic S (2006) Sampling of major histocompatibility complex class I-associated peptidome suggests relatively looser global association of HLA-B*5101 with peptides. Hum Immunol 67:894–906

    Article  PubMed  CAS  Google Scholar 

  7. Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296

    Article  PubMed  CAS  Google Scholar 

  8. Stevanovic S, Schild H (1999) Quantitative aspects of T cell activation–peptide generation and editing by MHC class I molecules. Semin Immunol 11:375–384

    Article  PubMed  CAS  Google Scholar 

  9. Hunt DF, Henderson RA, Shabanowitz J et al (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255:1261–1263

    Article  PubMed  CAS  Google Scholar 

  10. Kast WM, Brandt RM, Sidney J et al (1994) Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. J Immunol 152:3904–3912

    PubMed  CAS  Google Scholar 

  11. Parker KC, Bednarek MA, Hull LK et al (1992) Sequence motifs important for peptide binding to the human MHC class I molecule, HLA-A2. J Immunol 149:3580–3587

    PubMed  CAS  Google Scholar 

  12. Pogue RR, Eron J, Frelinger JA, Matsui M (1995) Amino-terminal alteration of the HLA-A*0201-restricted human immunodeficiency virus pol peptide increases complex stability and in vitro immunogenicity. Proc Natl Acad Sci USA 92:8166–8170

    Article  PubMed  CAS  Google Scholar 

  13. Ruppert J, Sidney J, Celis E, Kubo RT, Grey HM, Sette A (1993) Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell 74:929–937

    Article  PubMed  CAS  Google Scholar 

  14. Smith MH, Nuara AA, Egen JG, Sirjani DB, Lam KS, Grimes WJ (1998) Baculoviral expressed HLA class I heavy chains used to screen a synthetic peptide library for allele-specific peptide binding motifs. Mol Immunol 35:1033–1043

    Article  PubMed  CAS  Google Scholar 

  15. Linnebacher M, Gebert J, Rudy W et al (2001) Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens. Int J Cancer 93:6–11

    Article  PubMed  CAS  Google Scholar 

  16. Saeterdal I, Bjorheim J, Lislerud K et al (2001) Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci USA 98:13255–13260

    Article  PubMed  CAS  Google Scholar 

  17. Schwitalle Y, Linnebacher M, Ripberger E, Gebert J, von Knebel Doeberitz M (2004) Immunogenic peptides generated by frameshift mutations in DNA mismatch repair-deficient cancer cells. Cancer Immun 4:14

    PubMed  Google Scholar 

  18. Townsend A, Ohlen C, Rogers M, Edwards J, Mukherjee S, Bastin J (1994) Source of unique tumour antigens. Nature 371:662

    Article  PubMed  CAS  Google Scholar 

  19. Elliott T, Bodmer H, Townsend A (1996) Recognition of out-of-frame major histocompatibility complex class I-restricted epitopes in vivo. Eur J Immunol 26:1175–1179

    Article  PubMed  CAS  Google Scholar 

  20. Cheng JB, Jacquemin E, Gerhardt M et al (2003) Molecular genetics of 3beta-hydroxy-Delta5–C27-steroid oxidoreductase deficiency in 16 patients with loss of bile acid synthesis and liver disease. J Clin Endocrinol Metab 88:1833–1841

    Article  PubMed  CAS  Google Scholar 

  21. van der Burg SH, Ras E, Drijfhout JW et al (1995) An HLA class I peptide-binding assay based on competition for binding to class I molecules on intact human B cells. Identification of conserved HIV-1 polymerase peptides binding to HLA-A*0301. Hum Immunol 44:189–198

    Article  PubMed  Google Scholar 

  22. Korbie DJ, Mattick JS (2008) Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protocols 3:1452–1456

    Article  CAS  Google Scholar 

  23. Smith MH, Lam KS, Hersh EM, Lebl M, Grimes WJ (1994) Peptide sequences binding to MHC class I proteins. Mol Immunol 31:1431–1437

    Article  PubMed  CAS  Google Scholar 

  24. Lam KS, Lebl M, Krchnak V (1997) The “One-Bead-One-Compound” combinatorial library method. Chem Rev 97:411–448

    Article  PubMed  CAS  Google Scholar 

  25. Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354:82–84

    Article  PubMed  CAS  Google Scholar 

  26. Dionne SO, Myers CE, Smith MH, Lake DF (2004) Her-2/neu altered peptide ligand-induced CTL responses: implications for peptides with increased HLA affinity and T-cell-receptor interaction. Cancer Immunol Immunother 53:307–314

    Article  PubMed  Google Scholar 

  27. Parkhurst MR, Salgaller ML, Southwood S et al (1996) Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. J Immunol 157:2539–2548

    PubMed  CAS  Google Scholar 

  28. Kumar N, Mohanty D (2007) MODPROPEP: a program for knowledge-based modeling of protein-peptide complexes. Nucleic Acids Res 35:W549–W555

    Article  PubMed  Google Scholar 

  29. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219

    Article  PubMed  CAS  Google Scholar 

  30. Myers CE, Dionne SO, Shakalya K, Mahadevan D, Smith MH, Lake DF (2008) Variation in cytotoxic T-lymphocyte responses to peptides derived from tyrosinase-related protein-2. Hum Immunol 69:24–31

    Article  PubMed  CAS  Google Scholar 

  31. Dionne SO, Smith MH, Marincola FM, Lake DF (2003) Functional characterization of CTL against gp100 altered peptide ligands. Cancer Immunol Immunother 52:199–206

    PubMed  CAS  Google Scholar 

  32. Dionne SO, Smith MH, Marincola FM, Lake DF (2001) Antigen presentation of a modified tumor-derived peptide by tumor infiltrating lymphocytes. Cell Immunol 214:139–144

    Article  PubMed  CAS  Google Scholar 

  33. Ishikawa T, Fujita T, Suzuki Y et al (2003) Tumor-specific immunological recognition of frameshift-mutated peptides in colon cancer with microsatellite instability. Cancer Res 63:5564–5572

    PubMed  CAS  Google Scholar 

  34. Belicha-Villanueva A, Blickwedehl J, McEvoy S, Golding M, Gollnick SO, Bangia N (2010) What is the role of alternate splicing in antigen presentation by major histocompatibility complex class I molecules? Immunol Res 46:32–44

    Article  PubMed  CAS  Google Scholar 

  35. Ward AJ, Cooper TA (2010) The pathobiology of splicing. J Pathol 220:152–163

    PubMed  CAS  Google Scholar 

  36. Kalnina Z, Zayakin P, Silina K, Line A (2005) Alterations of pre-mRNA splicing in cancer. Genes Chromosomes Cancer 42:342–357

    Article  PubMed  CAS  Google Scholar 

  37. Gan HK, Kaye AH, Luwor RB (2009) The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci 16:748–754

    Article  PubMed  CAS  Google Scholar 

  38. Farabaugh PJ (1996) Programmed translational frameshifting. Annu Rev Genet 30:507–528

    Article  PubMed  CAS  Google Scholar 

  39. Fernandez J, Yaman I, Huang C et al (2005) Ribosome stalling regulates IRES-mediated translation in eukaryotes, a parallel to prokaryotic attenuation. Mol Cell 17:405–416

    Article  PubMed  CAS  Google Scholar 

  40. Hansen TM, Reihani SN, Oddershede LB, Sorensen MA (2007) Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting. Proc Natl Acad Sci USA 104:5830–5835

    Article  PubMed  CAS  Google Scholar 

  41. Bodmer S, Strommer K, Frei K et al (1989) Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J Immunol 143:3222–3229

    PubMed  CAS  Google Scholar 

  42. Finke J, Ferrone S, Frey A, Mufson A, Ochoa A (1999) Where have all the T cells gone? Mechanisms of immune evasion by tumors. Immunol Today 20:158–160

    Article  PubMed  CAS  Google Scholar 

  43. van Besouw NM, Zuijderwijk JM, de Kuiper P, Ijzermans JN, Weimar W, van der Mast BJ (2005) The granzyme B and interferon-gamma enzyme-linked immunospot assay as alternatives for cytotoxic T-lymphocyte precursor frequency after renal transplantation. Transplantation 79:1062–1066

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank HoJoon Lee, M.S. for the frameshift database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas F. Lake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers, C.E., Hanavan, P., Antwi, K. et al. CTL recognition of a novel HLA-A*0201-binding peptide derived from glioblastoma multiforme tumor cells. Cancer Immunol Immunother 60, 1319–1332 (2011). https://doi.org/10.1007/s00262-011-1032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1032-4

Keywords

Navigation