Skip to main content
Log in

Mechanisms of T-cell protection from death by IRX-2: a new immunotherapeutic

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Objectives

IRX-2 is a novel immunotherapeutic containing physiologic quantities of several cytokines which protects human T lymphocytes from tumor-induced or drug-induced apoptosis. Here, we investigate the mechanisms responsible for IRX-2-mediated protection of T lymphocytes exposed to tumor-derived microvesicles (TMV).

Methods

Jurkat cells or primary human T cells ± IRX-2 were co-incubated with TMV and then examined by flow cytometry or Western blots for expression of molecules regulating cell survival (FLIP, Bcl-2, Bcl-xL, Mcl-1) or death (Fas, caspase 8, caspase 9, Bax, Bid). ANX V binding, caspase activation or cytochrome c release were also measured ± cycloheximide (CHX) or ± the Akt-specific inhibitor. Jurkat cells transfected with the cFLIP gene were used to evaluate the role of cFLIP in IRX-2-mediated protection. Effects of CHX on IRX-2-mediated protection and activation of NF-κB upon the TMV/IRX-2 treatment were also measured.

Results

IRX-2 protected T cells from apoptosis by preventing Fas overexpression induced by TMV and blocking caspase 8 activation by up-regulating cFLIP. Jurkat cells overexpressing cFLIP were more resistant to TMV-induced apoptosis than the mock-transfected cells (p < 0.02). Signaling via the PI3K/Akt pathway, IRX-2 corrected the imbalance of pro- versus anti-apoptotic proteins induced by TMV and promoted NF-κB translocation to the nucleus. CHX abolished IRX-2-mediated protection in T cells, suggesting that IRX-2 induces de novo synthesis of one or more proteins that are required for protection.

Conclusions

This biologic may be therapeutically useful for protection of activated T cells from tumor-induced immune suppression and death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TMV:

Tumor-derived microvesicles

ANXV:

Annexin V

PBMC:

Peripheral blood mononuclear cells

CHX:

Cycloheximide

BSA:

Bovine serum albumin

FBS:

Fetal bovine serum

MMP:

Mitochondrial membrane potential

AICD:

Activation-induced cell death

CTL:

CD8+ cytotoxic T lymphocytes

TCR:

T cell receptor

FLIP:

Cellular caspase 8 (FLICE)-like inhibitory protein

References

  1. Chaudhuri D, Suriano R, Mittelman A, Tiwari RK (2009) Targeting the immune system in cancer. Curr Pharm Biotechnol 10(2):166–184

    Article  PubMed  CAS  Google Scholar 

  2. Parmiani G, De Filippo A, Novellino L, Castelli C (2007) Unique human tumor antigens: immunobiology and use in clinical trials. J Immunol 178(4):1975–1979

    PubMed  CAS  Google Scholar 

  3. Lee PP, Yee C, Savage PA et al (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5(6):677–685

    Article  PubMed  CAS  Google Scholar 

  4. Romero P, Cerottini JC, Speiser DE (2006) The human T cell response to melanoma antigens. Adv Immunol 92:187–224

    Article  PubMed  CAS  Google Scholar 

  5. Whiteside TL (2010) Immune responses to malignancies. J Allergy Clin Immunol 125(2 Suppl 2):S272–S283

    Article  PubMed  Google Scholar 

  6. Zhang T, Herlyn D (2009) Combination of active specific immunotherapy or adoptive antibody or lymphocyte immunotherapy with chemotherapy in the treatment of cancer. Cancer Immunol Immunother 58(4):475–492

    Article  PubMed  CAS  Google Scholar 

  7. Hoffmann TK, Dworacki G, Tsukihiro T et al (2002) Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res 8(8):2553–2562

    PubMed  Google Scholar 

  8. Whiteside TL (2002) Tumor-induced death of immune cells: its mechanisms and consequences. Semin Cancer Biol 12(1):43–50

    Article  PubMed  CAS  Google Scholar 

  9. Abusamra AJ, Zhong Z, Zheng X et al (2005) Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis 35(2):169–173

    Article  PubMed  CAS  Google Scholar 

  10. Whiteside TL (2005) Tumour-derived exosomes or microvesicles: another mechanism of tumour escape from the host immune system? Br J Cancer 92(2):209–211

    Article  PubMed  CAS  Google Scholar 

  11. Bergmann C, Strauss L, Wieckowski E et al (2009) Tumor-derived microvesicles in sera of patients with head and neck cancer and their role in tumor progression. Head Neck 31(3):371–380

    Article  PubMed  Google Scholar 

  12. Huber V, Fais S, Iero M et al (2005) Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128(7):1796–1804

    Article  PubMed  CAS  Google Scholar 

  13. Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL (2005) Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res 11(3):1010–1020

    PubMed  CAS  Google Scholar 

  14. Taylor DD, Gercel-Taylor C, Lyons KS, Stanson J, Whiteside TL (2003) T-cell apoptosis and suppression of T-cell receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clin Cancer Res 9(14):5113–5119

    PubMed  CAS  Google Scholar 

  15. Czystowska M, Han J, Szczepanski MJ et al (2009) IRX-2, a novel immunotherapeutic, protects human T cells from tumor-induced cell death. Cell Death Differ 16(5):708–718

    Article  PubMed  CAS  Google Scholar 

  16. Gastman BR, Atarshi Y, Reichert TE et al (1999) Fas ligand is expressed on human squamous cell carcinomas of the head and neck, and it promotes apoptosis of T lymphocytes. Cancer Res 59(20):5356–5364

    PubMed  CAS  Google Scholar 

  17. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9(1):59–71

    Article  PubMed  CAS  Google Scholar 

  18. Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL (2009) Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol 183(6):3720–3730

    Article  PubMed  CAS  Google Scholar 

  19. Thome M, Tschopp J (2001) Regulation of lymphocyte proliferation and death by FLIP. Nat Rev Immunol 1(1):50–58

    Article  PubMed  CAS  Google Scholar 

  20. Uriarte SM, Joshi-Barve S, Song Z et al (2005) Akt inhibition upregulates FasL, downregulates c-FLIPs and induces caspase-8-dependent cell death in Jurkat T lymphocytes. Cell Death Differ 12(3):233–242

    Article  PubMed  CAS  Google Scholar 

  21. Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3(3):221–227

    Article  PubMed  CAS  Google Scholar 

  22. Kataoka T, Budd RC, Holler N et al (2000) The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways. Curr Biol 10(11):640–648

    Article  PubMed  CAS  Google Scholar 

  23. Gastman BR, Johnson DE, Whiteside TL, Rabinowich H (2000) Tumor-induced apoptosis of T lymphocytes: elucidation of intracellular apoptotic events. Blood 95(6):2015–2023

    PubMed  CAS  Google Scholar 

  24. Kim JW, Tsukishiro T, Johnson JT, Whiteside TL (2004) Expression of pro- and antiapoptotic proteins in circulating CD8+ T cells of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 10(15):5101–5110

    Article  PubMed  CAS  Google Scholar 

  25. Cheng EH, Kirsch DG, Clem RJ et al (1997) Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278(5345):1966–1968

    Article  PubMed  CAS  Google Scholar 

  26. Danial NN (2007) BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res 13(24):7254–7263

    Article  PubMed  CAS  Google Scholar 

  27. Gupta S, Gollapudi S (2007) Susceptibility of naive and subsets of memory T cells to apoptosis via multiple signaling pathways. Autoimmun Rev 6(7):476–481

    Article  PubMed  CAS  Google Scholar 

  28. Ma A, Koka R, Burkett P (2006) Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol 24:657–679

    Article  PubMed  CAS  Google Scholar 

  29. Molto L, Rayman P, Paszkiewicz-Kozik E et al (2003) The Bcl-2 transgene protects T cells from renal cell carcinoma-mediated apoptosis. Clin Cancer Res 9(11):4060–4068

    PubMed  CAS  Google Scholar 

  30. Weng C, Li Y, Xu D, Shi Y, Tang H (2005) Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. J Biol Chem 280(11):10491–10500

    Article  PubMed  CAS  Google Scholar 

  31. Budd RC, Yeh WC, Tschopp J (2006) cFLIP regulation of lymphocyte activation and development. Nat Rev Immunol 6(3):196–204

    Article  PubMed  CAS  Google Scholar 

  32. Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S (2001) Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 276(23):20633–20640

    Article  PubMed  CAS  Google Scholar 

  33. Schmitz I, Krueger A, Baumann S, Schulze-Bergkamen H, Krammer PH, Kirchhoff S (2003) An IL-2-dependent switch between CD95 signaling pathways sensitizes primary human T cells toward CD95-mediated activation-induced cell death. J Immunol 171(6):2930–2936

    PubMed  CAS  Google Scholar 

  34. Van Parijs L, Refaeli Y, Abbas AK, Baltimore D (1999) Autoimmunity as a consequence of retrovirus-mediated expression of C-FLIP in lymphocytes. Immunity 11(6):763–770

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by NIH grant PO1 CA109688 to TLW.

Conflict of interest

None of the authors have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa L. Whiteside.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 37 kb)

Supplementary material 2 (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czystowska, M., Szczepanski, M.J., Szajnik, M. et al. Mechanisms of T-cell protection from death by IRX-2: a new immunotherapeutic. Cancer Immunol Immunother 60, 495–506 (2011). https://doi.org/10.1007/s00262-010-0951-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0951-9

Keywords

Navigation