Skip to main content

Advertisement

Log in

Progression of intracranial glioma disrupts thymic homeostasis and induces T-cell apoptosis in vivo

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The thymus is the site where all T-cell precursors develop, mature, and subsequently leave as mature T-cells. Since the mechanisms that mediate and regulate thymic apoptosis are not fully understood, we utilized a syngenic GL261 murine glioma model to further elucidate the fate of T-cells in tumor bearing C57BL/6 mice. First, we found a dramatic reduction in the size of the thymus accompanied by a decrease in thymic cellularity in response to glioma growth in the brains of affected mice. There was a marked reduction of double positive subset and an increase in the frequency of CD4+ and CD8+ single positive T-cell subsets. Analysis of double negative thymocytes showed an increase in the accumulation of CD44+ cells. In contrast, there was a marked loss of CD44 and CD122 expression in CD4+ and CD8+ subsets. The growth of intracranial tumors was also associated with decreased levels of HO-1, a mediator of anti-apoptotic function, and increased levels of Notch-1 and its ligand, Jagged-1. To determine whether thymic atrophy could be due to the effect of Notch and its ligand expression by glioma in vivo, we performed a bone marrow transplant experiment. Our results suggest that Notch-1 and its ligand Jagged-1 can induce apoptosis of thymocytes, thereby influencing thymic development, immune system homeostasis, and function of the immune cells in a model of experimental glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ribatti D, Crivellato E, Vacca A (2006) Miller’s seminal studies on the role of thymus in immunity. Clin Exp Immunol 144:371–375

    Article  PubMed  CAS  Google Scholar 

  2. Anderson G, Jenkinson EJ (2001) Lymphostromal interactions in thymic development and function. Nat Rev Immunol 1:31–40

    Article  PubMed  CAS  Google Scholar 

  3. Miele L, Osborne B (1999) Arbiter of differentiation and death: Notch signaling meets apoptosis. J Cell Physiol 181:393–409

    Article  PubMed  CAS  Google Scholar 

  4. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  PubMed  CAS  Google Scholar 

  5. Martinez Arias A, Zecchini V, Brennan K (2002) CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr Opin Genet Dev 12:524–533

    Article  PubMed  Google Scholar 

  6. Bray S (1998) Notch signalling in Drosophila: three ways to use a pathway. Semin Cell Dev Biol 9:591–597

    Article  PubMed  CAS  Google Scholar 

  7. Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster J C, Krishna S, Metzger D, Chambon P, Miele L, Aguet M, Radtke F, Dotto GP (2001) Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. Embo J 20:3427–3436

    Article  PubMed  CAS  Google Scholar 

  8. Robey E, Chang D, Itano A, Cado D, Alexander H, Lans D, Weinmaster G, Salmon P (1996) An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87:483–492

    Article  PubMed  CAS  Google Scholar 

  9. Qi H, Rand MD, Wu X, Sestan N, Wang W, Rakic P, Xu T, Artavanis-Tsakonas S (1999) Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science 283:91–94

    Article  PubMed  CAS  Google Scholar 

  10. Li L, Milner LA, Deng Y, Iwata M, Banta A, Graf L, Marcovina S, Friedman C, Trask BJ, Hood L, Torok-Storb B (1998) The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. Immunity 8:43–55

    Article  PubMed  CAS  Google Scholar 

  11. Six E, Ndiaye D, Laabi Y, Brou C, Gupta-Rossi N, Israel A, Logeat F (2003) The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and gamma-secretase. Proc Natl Acad Sci USA 100:7638–7643

    Article  PubMed  CAS  Google Scholar 

  12. Deftos ML, Huang E, Ojala EW, Forbush KA, Bevan MJ (2000) Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity 13:73–84

    Article  PubMed  CAS  Google Scholar 

  13. Reizis B, Leder P (2002) Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev 16:295–300

    Article  PubMed  CAS  Google Scholar 

  14. Krebs LT, Deftos ML, Bevan MJ, Gridley T (2001) The Nrarp gene encodes an ankyrin-repeat protein that is transcriptionally regulated by the notch signaling pathway. Dev Biol 238:110–119

    Article  PubMed  CAS  Google Scholar 

  15. Pirot P, van Grunsven LA, Marine JC, Huylebroeck D, Bellefroid EJ (2004) Direct regulation of the Nrarp gene promoter by the Notch signaling pathway. Biochem Biophys Res Commun 322:526–534

    Article  PubMed  CAS  Google Scholar 

  16. Weerkamp F, Luis TC, Naber BA, Koster EE, Jeannotte L, van Dongen JJ, Staal FJ (2006) Identification of Notch target genes in uncommitted T-cell progenitors: No direct induction of a T-cell specific gene program. Leukemia 20:1967–1977

    Article  PubMed  CAS  Google Scholar 

  17. Deftos ML, He YW, Ojala EW, Bevan MJ (1998) Correlating notch signaling with thymocyte maturation. Immunity 9:777–786

    Article  PubMed  CAS  Google Scholar 

  18. Marford LA, Dix AR, Brooks WH, Roszman TL (1999) Apoptotic elimination of peripheral T lymphocytes in patients with primary intracranial tumors. J Neurosurg 91:935–46

    Article  Google Scholar 

  19. Prins RM, Graf MR, Merchant RE, Black KL, Wheeler CJ (2003) Thymic function and output of recent thymic emigrant T cells during intracranial glioma progression. J Neurooncol 64:45–54

    PubMed  Google Scholar 

  20. Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J, Sundaresan T, Pastorino S, Park JK, Mikolaenko I, Maric D, Eberhart CG, Fine HA (2005) Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 65:2353–2363

    Article  PubMed  CAS  Google Scholar 

  21. El Andaloussi A, Graves S, Meng F, Mandal M, Mashayekhi M, Aifantis I (2006) Hedgehog signaling controls thymocyte progenitor homeostasis and differentiation in the thymus. Nat Immunol 7:418–426

    Article  PubMed  CAS  Google Scholar 

  22. Schwarzler C, Oliferenko S, Gunthert U (2001) Variant isoforms of CD44 are required in early thymocyte development. Eur J Immunol 31:2997–3005

    Article  PubMed  CAS  Google Scholar 

  23. Judge AD, Zhang X, Fujii H, Surh CD, Sprent J (2002) Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. J Exp Med 196:935–946

    Article  PubMed  CAS  Google Scholar 

  24. Sancho D, Gomez M, Sanchez-Madrid F (2005) CD69 is an immunoregulatory molecule induced following activation. Trends Immunol 26:136–140

    Article  PubMed  CAS  Google Scholar 

  25. Feng C, Woodside KJ, Vance BA, El-Khoury D, Canelles M, Lee J, Gress R, Fowlkes BJ, Shores EW, Love PE (2002) A potential role for CD69 in thymocyte emigration. Int Immunol 14:535–544

    Article  PubMed  CAS  Google Scholar 

  26. El Andaloussi A, Lesniak MS (2007) CD4(+) CD25 (+) FoxP3 (+) T-cell infiltration and heme oxygenase–1 expression correlate with tumor grade in human gliomas. J Neurooncol 83:145–152

    Article  PubMed  CAS  Google Scholar 

  27. Mayerhofer M, Florian S, Krauth MT, Aichberger KJ, Bilban M, Marculescu R, Printz D, Fritsch G, Wagner O, Selzer E, Sperr WR, Valent P, Sillaber C (2004) Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res 64:3148–3154

    Article  PubMed  CAS  Google Scholar 

  28. Anderson G, Pongracz J, Parnell S, Jenkinson EJ (2001) Notch ligand-bearing thymic epithelial cells initiate and sustain Notch signaling in thymocytes independently of T cell receptor signaling. Eur J Immunol 31:3349–3354

    Article  PubMed  CAS  Google Scholar 

  29. Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–458

    Article  PubMed  CAS  Google Scholar 

  30. Godfrey DI, Kennedy J, Suda T, Zlotnik A (1993) A developmental pathway involving four phenotypically and functionally distinct subsets of CD3–CD4–CD8–triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol 150:4244–4252

    PubMed  CAS  Google Scholar 

  31. Drela N, Bien J, Kozlowska E (2005) T-cell homeostasis in mice exposed to airborne xenobiotics. Immunology 114:476–483

    Article  PubMed  CAS  Google Scholar 

  32. Drela N (2006) Xenobiotic-induced alterations in thymocyte development. Apmis 114:399–419

    Article  PubMed  CAS  Google Scholar 

  33. Drela N, Zesko I (2003) Gender-related early immune changes in mice exposed to airborne suspended matter. Immunopharmacol Immunotoxicol 25:101–121

    Article  PubMed  Google Scholar 

  34. Ciofani M, Knowles GC, Wiest DL, von Boehmer H, Zuniga-Pflucker JC (2006) Stage-specific and differential notch dependency at the alphabeta and gammadelta T lineage bifurcation. Immunity 25:105–116

    Article  PubMed  CAS  Google Scholar 

  35. Milner LA, Bigas A (1999) Notch as a mediator of cell fate determination in hematopoiesis: evidence and speculation. Blood 93:2431–2448

    PubMed  CAS  Google Scholar 

  36. Jimenez E, Vicente A, Sacedon R, Munoz JJ, Weinmaster G, Zapata AG, Varas A (2001) Distinct mechanisms contribute to generate and change the CD4:CD8 cell ratio during thymus development: a role for Notch ligand, Jagged 1. J Immunol 166:5898–5908

    PubMed  CAS  Google Scholar 

  37. LaVoie MJ, Selkoe DJ (2003) The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments. J Biol Chem 278:34427–34437

    Article  PubMed  CAS  Google Scholar 

  38. Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G, Edwards AD, Isaacs JD, Lechler RI (2001) Human CD4(+) CD25(+) cells: a naturally occurring population of regulatory T cells. Blood 98:2736–2744

    Article  PubMed  CAS  Google Scholar 

  39. Jaleco AC, Neves H, Hooijberg E, Gameiro P, Clode N, Haury M, Henrique D, Parreira L (2001) Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J Exp Med 194:991–1002

    Article  PubMed  CAS  Google Scholar 

  40. Doi K, Akaike T, Fujii S, Tanaka S, Ikebe N, Beppu T, Shibahara S, Ogawa M, Maeda H (1999) Induction of haem oxygenase-1 nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Br J Cancer 80:1945–1954

    Article  PubMed  CAS  Google Scholar 

  41. Tanaka S, Akaike T, Fang J, Beppu T, Ogawa M, Tamura F, Miyamoto Y, Maeda H (2003) Antiapoptotic effect of haem oxygenase-1 induced by nitric oxide in experimental solid tumour. Br J Cancer 88:902–909

    Article  PubMed  CAS  Google Scholar 

  42. Morse D, Choi AM (2002) Heme oxygenase-1: the “emerging molecule” has arrived. Am J Respir Cell Mol Biol 27:8–16

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the editorial assistance of Cleo Rolle, PhD. This study was supported by the Elsa U. Pardee Foundation as well as the Brain Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej S. Lesniak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andaloussi, A.E., Han, Y. & Lesniak, M.S. Progression of intracranial glioma disrupts thymic homeostasis and induces T-cell apoptosis in vivo. Cancer Immunol Immunother 57, 1807–1816 (2008). https://doi.org/10.1007/s00262-008-0508-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0508-3

Keywords