Skip to main content

Advertisement

Log in

Using extracellular biomarkers for monitoring efficacy of therapeutics in cancer patients: an update

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Rapidly detectable and easily accessible markers of tumor cell death are needed for evaluating early therapeutic efficacy for immunotherapy and chemotherapy so that patients and their physicians can decide whether to remain with a given therapeutic strategy. Currently, image-based tests such as computed tomography scans and magnetic resonance imaging are used to visualize the response of a patient’s tumor, but often these evaluations are not conducted for weeks to months after treatment begins. While serum levels of secreted proteins such as carcinoembryonic antigen and prostate specific antigen are commonly monitored to gauge tumor status during therapy and between image evaluations, the levels of these proteins do not always correlate well with the actual tumor response. In laboratory studies, it has been shown that tumor cells undergoing apoptosis can release cellular components into cell culture media such as cytochrome c, nucleosomes, cleaved cytokeratin-18 and E-cadherin. Studies of patient sera have found that these and other macromolecules can be found in circulation during cancer therapy, providing a potential source of material for monitoring treatment efficacy. In the future, analysis of biofluids from severe combined immunodeficiency mice bearing patient tumor specimens treated with a targeted therapy such as Apo2L/tumor necrosis factor-related apoptosis-inducing ligand will be useful in the preclinical identification of therapy response markers. In this review, the current status of the identification of serum markers of tumor cell apoptosis is provided, as well as a discussion of critical research questions that must be addressed and the considerations necessary when identifying a marker that reflects true clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

CEA:

Carcinoembryonic antigen

CK18:

Cytokeratin-18

CT:

Computed tomography

DISC:

Death-inducing signaling complex

EGFR:

Epithelial growth factor receptor

FADD:

Fas-associated death domain

FDG:

18F-deoxyglucose

FLT:

18F-fluorothymidine

LDH:

Lactate dehydrogenase

MMP:

Matrix metalloproteinase

MRI:

Magnetic resonance imaging

NCCN:

National comprehensive cancer network

PDT:

Photodynamic therapy

PET:

Positron emission tomography

PSA:

Prostate specific antigen

RECIST:

Response evaluation criteria in solid tumors

SEER:

Surveillance epidemiology and end results

SCID:

Severe combined immunodeficiency

SPECT:

Single photon emission computerized tomography

TIMP:

Tissue inhibitor of MMPs

TNF:

Tumor necrosis factor

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

TUNEL:

Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling

WHO:

World Health Organization

References

  1. Abraham J, Allegra CJ (2001) (eds) Bethesda Handbook of Clinical Oncology. Lippincott Williams and Wilkins, Philadelphia

  2. Ahlemeyer B, Klumpp S, Krieglstein J (2002) Release of cytochrome c into the extracellular space contributes to neuronal apoptosis induced by staurosporine. Brain Res 934:107–116

    PubMed  CAS  Google Scholar 

  3. Almasan A, Ashkenazi A (2003) Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 14:337–348

    PubMed  CAS  Google Scholar 

  4. Aquino A, Prete SP, Guadagni F, Greiner JW, Giuliani A, Orlando L, Masci G, De Santis S, Bonmassar E, Graziani G (2000) Effect of 5-fluorouracil on carcinoembryonic antigen expression and shedding at clonal level in colon cancer cells. Anticancer Res 20:3475–3484

    PubMed  CAS  Google Scholar 

  5. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162

    Article  PubMed  CAS  Google Scholar 

  6. Baker M (2005) In biomarkers we trust? Nat Biotechnol 23:297–304

    PubMed  CAS  Google Scholar 

  7. Bantel H, Lugering A, Heidemann J, Volkmann X, Poremba C, Strassburg CP, Manns MP, Schulze-Osthoff K (2004) Detection of apoptotic caspase activation in sera from patients with chronic HCV infection is associated with fibrotic liver injury. Hepatology 40:1078–1087

    PubMed  CAS  Google Scholar 

  8. Barczyk K, Kreuter M, Pryjma J, Booy EP, Maddika S, Ghavami S, Berdel WE, Roth J, Los M (2005) Serum cytochrome c indicates in vivo apoptosis and can serve as a prognostic marker during cancer therapy. Int J Cancer 116:167–173

    PubMed  CAS  Google Scholar 

  9. Bast RC Jr, Badgwell D, Lu Z, Marquez R, Rosen D, Liu J, Baggerly KA, Atkinson EN, Skates S, Zhang Z, Lokshin A, Menon U, Jacobs I, Lu K (2005) New tumor markers: CA125 and beyond. Int J Gynecol Cancer 15(Suppl 3):274–281

    PubMed  Google Scholar 

  10. Belhocine T, Steinmetz N, Hustinx R, Bartsch P, Jerusalem G, Seidel L, Rigo P, Green A (2002) Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 8:2766–2774

    PubMed  CAS  Google Scholar 

  11. Benson AB III, Choti MA, Cohen AM, Doroshow JH, Fuchs C, Kiel K, Martin EW Jr, McGinn C, Petrelli NJ, Posey JA, Skibber JM, Venook A, Yeatman TJ (2000) NCCN practice guidelines for colorectal cancer. Oncol (Williston Park) 14:203–212

    Google Scholar 

  12. Biven K, Erdal H, Hagg M, Ueno T, Zhou R, Lynch M, Rowley B, Wood J, Zhang C, Toi M, Shoshan MC, Linder S (2003) A novel assay for discovery and characterization of pro-apoptotic drugs and for monitoring apoptosis in patient sera. Apoptosis 8:263–268

    PubMed  CAS  Google Scholar 

  13. Bodmer JL, Holler N, Reynard S, Vinciguerra P, Schneider P, Juo P, Blenis J, Tschopp J (2000) TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2:241–243

    PubMed  CAS  Google Scholar 

  14. Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, Bader S, Sekido Y, Latif F, Milchgrub S, Toyooka S, Gazdar AF, Lerman MI, Zabarovsky E, White M, Minna JD (2001) Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93:691–699

    PubMed  CAS  Google Scholar 

  15. Cantarella G, Risuglia N, Dell’eva R, Lempereur L, Albini A, Pennisi G, Scoto GM, Noonan DN, Bernardini R (2006) TRAIL inhibits angiogenesis stimulated by VEGF expression in human glioblastoma cells. Br J Cancer 94:1428–1435

    PubMed  CAS  Google Scholar 

  16. Chabre H, Amoura Z, Piette JC, Godeau P, Bach JF, Koutouzov S (1995) Presence of nucleosome-restricted antibodies in patients with systemic lupus erythematosus. Arthritis Rheum 38:1485–1491

    PubMed  CAS  Google Scholar 

  17. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791

    PubMed  CAS  Google Scholar 

  18. Diamandis EP (2004) Analysis of serum proteomic patterns for early cancer diagnosis: drawing attention to potential problems. J Natl Cancer Inst 96:353–356

    PubMed  Google Scholar 

  19. Diamandis EP (2006) Peptidomics for cancer diagnosis: present and future. J Proteome Res 5:2079–2082

    PubMed  CAS  Google Scholar 

  20. Dickson PV, Hamner JB, Cauthen LA, Ng CY, McCarville MB, Davidoff AM (2006) Efficacy of zoledronate against neuroblastoma. Surgery 140:227–235

    PubMed  Google Scholar 

  21. Espina V, Dettloff KA, Cowherd S, Petricoin EF III, Liotta LA (2004) Use of proteomic analysis to monitor responses to biological therapies. Expert Opin Biol Ther 4:83–93

    PubMed  CAS  Google Scholar 

  22. Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, Radich J, Anderson G, Hartwell L (2003) The case for early detection. Nat Rev Cancer 3:243–252

    PubMed  CAS  Google Scholar 

  23. Feldstein AE, Gores GJ (2004) An apoptosis biomarker goes to the HCV clinic. Hepatology 40:1044–1046

    PubMed  CAS  Google Scholar 

  24. Feneley MR, Partin AW (2000) Diagnosis of localized prostate cancer: 10 years of progress. Curr Opin Urol 10:319–327

    PubMed  CAS  Google Scholar 

  25. Fiegl H, Millinger S, Mueller-Holzner E, Marth C, Ensinger C, Berger A, Klocker H, Goebel G, Widschwendter M (2005) Circulating tumor-specific DNA: a marker for monitoring efficacy of adjuvant therapy in cancer patients. Cancer Res 65:1141–1145

    PubMed  CAS  Google Scholar 

  26. Fleming TR, DeMets DL (1996) Surrogate end points in clinical trials: are we being misled? Ann Intern Med 125:605–613

    PubMed  CAS  Google Scholar 

  27. Gee MS, Upadhyay R, Bergquist H, Weissleder R, Josephson L, Mahmood U (2007) Multiparameter noninvasive assessment of treatment susceptibility, drug target inhibition and tumor response guides cancer treatment. Int J Cancer 121:2492–2500

    PubMed  CAS  Google Scholar 

  28. Gillham CM, Lucey JA, Keogan M, Duffy GJ, Malik V, Raouf AA, O’Byrne K, Hollywood D, Muldoon C, Reynolds JV (2006) (18)FDG uptake during induction chemoradiation for oesophageal cancer fails to predict histomorphological tumour response. Br J Cancer 95:1174–1179

    PubMed  CAS  Google Scholar 

  29. Gonzalez VM, Fuertes MA, Alonso C, Perez JM (2001) Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 59:657–663

    PubMed  CAS  Google Scholar 

  30. Green DR (2000) Apoptotic pathways: paper wraps stone blunts scissors. Cell 102:1–4

    PubMed  CAS  Google Scholar 

  31. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  32. Hanke B, Wein A, Martus P, Riedel C, Voelker M, Hahn EG, Schuppan D (2003) Serum markers of matrix turnover as predictors for the evolution of colorectal cancer metastasis under chemotherapy. Br J Cancer 88:1248–1250

    PubMed  CAS  Google Scholar 

  33. Hannun YA (1997) Apoptosis and the dilemma of cancer chemotherapy. Blood 89:1845–1853

    PubMed  CAS  Google Scholar 

  34. Hersh EM, Metch BS, Muggia FM, Brown TD, Whitehead RP, Budd GT, Rinehart JJ, Crawford ED, Bonnet JD, Behrens BC (1991) Phase II studies of recombinant human tumor necrosis factor alpha in patients with malignant disease: a summary of the Southwest Oncology Group experience. J Immunother 10:426–431

    PubMed  CAS  Google Scholar 

  35. Hohlbaum AM, Gregory MS, Ju ST, Marshak-Rothstein A (2001) Fas ligand engagement of resident peritoneal macrophages in vivo induces apoptosis and the production of neutrophil chemotactic factors. J Immunol 167:6217–6224

    PubMed  CAS  Google Scholar 

  36. Holdenrieder S, Holubec L Jr, Topolcan O, Finek J, Stieber P (2005) Circulating nucleosomes and cytokeratin 19-fragments in patients with colorectal cancer during chemotherapy. Anticancer Res 25:1795–1801

    PubMed  Google Scholar 

  37. Holdenrieder S, Stieber P (2004) Apoptotic markers in cancer. Clin Biochem 37:605–617

    PubMed  CAS  Google Scholar 

  38. Holdenrieder S, Stieber P, von Pawel J, Raith H, Nagel D, Feldmann K, Seidel D (2004) Circulating nucleosomes predict the response to chemotherapy in patients with advanced non-small cell lung cancer. Clin Cancer Res 10:5981–5987

    PubMed  CAS  Google Scholar 

  39. Huntly BJ, Gilliland DG (2005) Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 5:311–321

    PubMed  CAS  Google Scholar 

  40. Jaffe CC (2006) Measures of response: RECIST, WHO, and new alternatives. J Clin Oncol 24:3245–3251

    PubMed  Google Scholar 

  41. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665

    PubMed  CAS  Google Scholar 

  42. Kaufmann SH, Earnshaw WC (2000) Induction of apoptosis by cancer chemotherapy. Exp Cell Res 256:42–49

    PubMed  CAS  Google Scholar 

  43. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  44. Kim R, Emi M, Tanabe K (2006) The role of apoptosis in cancer cell survival and therapeutic outcome. Cancer Biol Ther 5:1429–1442

    Article  PubMed  CAS  Google Scholar 

  45. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A (2000) Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12:611–620

    PubMed  CAS  Google Scholar 

  46. Kramer G, Erdal H, Mertens HJ, Nap M, Mauermann J, Steiner G, Marberger M, Biven K, Shoshan MC, Linder S (2004) Differentiation between cell death modes using measurements of different soluble forms of extracellular cytokeratin 18. Cancer Res 64:1751–1756

    PubMed  CAS  Google Scholar 

  47. Kramer G, Schwarz S, Hagg M, Havelka AM, Linder S (2006) Docetaxel induces apoptosis in hormone refractory prostate carcinomas during multiple treatment cycles. Br J Cancer 94:1592–1598

    PubMed  CAS  Google Scholar 

  48. Kremer A, Holdenrieder S, Stieber P, Wilkowski R, Nagel D, Seidel D (2006) Nucleosomes in colorectal cancer patients during radiochemotherapy. Tumour Biol 27:235–242

    PubMed  CAS  Google Scholar 

  49. Kremer A, Wilkowski R, Holdenrieder S, Nagel D, Stieber P, Seidel D (2005) Nucleosomes in pancreatic cancer patients during radiochemotherapy. Tumour Biol 26:44–49

    PubMed  CAS  Google Scholar 

  50. Lee KC, Sud S, Meyer CR, Moffat BA, Chenevert TL, Rehemtulla A, Pienta KJ, Ross BD (2007) An imaging biomarker of early treatment response in prostate cancer that has metastasized to the bone. Cancer Res 67:3524–3529

    PubMed  CAS  Google Scholar 

  51. Leers MP, Kolgen W, Bjorklund V, Bergman T, Tribbick G, Persson B, Bjorklund P, Ramaekers FC, Bjorklund B, Nap M, Jornvall H, Schutte B (1999) Immunocytochemical detection and mapping of a cytokeratin 18 neo-epitope exposed during early apoptosis. J Pathol 187:567–572

    PubMed  CAS  Google Scholar 

  52. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37:646–650

    PubMed  CAS  Google Scholar 

  53. Leyton J, Latigo JR, Perumal M, Dhaliwal H, He Q, Aboagye EO (2005) Early detection of tumor response to chemotherapy by 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res 65:4202–4210

    PubMed  CAS  Google Scholar 

  54. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    PubMed  CAS  Google Scholar 

  55. Linder S, Havelka AM, Ueno T, Shoshan MC (2004) Determining tumor apoptosis and necrosis in patient serum using cytokeratin 18 as a biomarker. Cancer Lett 214:1–9

    PubMed  CAS  Google Scholar 

  56. Liotta LA, Petricoin EF (2006) Serum peptidome for cancer detection: spinning biologic trash into diagnostic gold. J Clin Invest 116:26–30

    PubMed  CAS  Google Scholar 

  57. Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, Somerfield MR, Hayes DF, Bast RC Jr (2006) ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 24:5313–5327

    PubMed  CAS  Google Scholar 

  58. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    PubMed  CAS  Google Scholar 

  59. Meggiato T, Calabrese F, Valente M, Favaretto E, Baliello E, Del Favero G (2000) Spontaneous apoptosis and proliferation in human pancreatic cancer. Pancreas 20:117–122

    PubMed  CAS  Google Scholar 

  60. Mehta AI, Ross S, Lowenthal MS, Fusaro V, Fishman DA, Petricoin EF III, Liotta LA (2003) Biomarker amplification by serum carrier protein binding. Dis Markers 19:1–10

    PubMed  CAS  Google Scholar 

  61. Menard C, Johann D, Lowenthal M, Muanza T, Sproull M, Ross S, Gulley J, Petricoin E, Coleman CN, Whiteley G, Liotta L, Camphausen K (2006) Discovering clinical biomarkers of ionizing radiation exposure with serum proteomic analysis. Cancer Res 66:1844–1850

    PubMed  CAS  Google Scholar 

  62. Moertel CG, Fleming TR, Macdonald JS, Haller DG, Laurie JA, Tangen C (1993) An evaluation of the carcinoembryonic antigen (CEA) test for monitoring patients with resected colon cancer. JAMA 270:943–947

    PubMed  CAS  Google Scholar 

  63. Mueller S, Holdenrieder S, Stieber P, Haferlach T, Schalhorn A, Braess J, Nagel D, Seidel D (2006) Early prediction of therapy response in patients with acute myeloid leukaemia by nucleosomal DNA fragments. BMC Cancer 6:143

    PubMed  Google Scholar 

  64. Naka T, Sugamura K, Hylander BL, Widmer MB, Rustum YM, Repasky EA (2002) Effects of tumor necrosis factor-related apoptosis-inducing ligand alone and in combination with chemotherapeutic agents on patients’ colon tumors grown in SCID mice. Cancer Res 62:5800–5806

    PubMed  CAS  Google Scholar 

  65. Neves AA, Brindle KM (2006) Assessing responses to cancer therapy using molecular imaging. Biochim Biophys Acta 1766:242–261

    PubMed  CAS  Google Scholar 

  66. Neves AA, Krishnan AS, Kettunen MI, Hu DE, Backer MM, Davletov B, Brindle KM (2007) A paramagnetic nanoprobe to detect tumor cell death using magnetic resonance imaging. Nano Lett 7:1419–1423

    PubMed  CAS  Google Scholar 

  67. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364:806–809

    PubMed  CAS  Google Scholar 

  68. Olofsson MH, Ueno T, Pan Y, Xu R, Cai F, van der Kuip H, Muerdter TE, Sonnenberg M, Aulitzky WE, Schwarz S, Andersson E, Shoshan MC, Havelka AM, Toi M, Linder S (2007) Cytokeratin-18 is a useful serum biomarker for early determination of response of breast carcinomas to chemotherapy. Clin Cancer Res 13:3198–3206

    PubMed  CAS  Google Scholar 

  69. Ozols RF, Herbst RS, Colson YL, Gralow J, Bonner J, Curran WJ Jr, Eisenberg BL, Ganz PA, Kramer BS, Kris MG, Markman M, Mayer RJ, Raghavan D, Reaman GH, Sawaya R, Schilsky RL, Schuchter LM, Sweetenham JW, Vahdat LT, Winn RJ (2007) Clinical cancer advances 2006: major research advances in cancer treatment, prevention, and screening—a report from the American Society of Clinical Oncology. J Clin Oncol 25:146–162

    PubMed  CAS  Google Scholar 

  70. Pardo J, Bosque A, Brehm R, Wallich R, Naval J, Mullbacher A, Anel A, Simon MM (2004) Apoptotic pathways are selectively activated by granzyme A and/or granzyme B in CTL-mediated target cell lysis. J Cell Biol 167:457–468

    PubMed  CAS  Google Scholar 

  71. Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359:572–577

    PubMed  CAS  Google Scholar 

  72. Petricoin EF, Belluco C, Araujo RP, Liotta LA (2006) The blood peptidome: a higher dimension of information content for cancer biomarker discovery. Nat Rev Cancer 6:961–967

    PubMed  CAS  Google Scholar 

  73. Pichon MF, Labroquere M, Rezai K, Lokiec F (2006) Variations of soluble fas and cytokeratin 18-Asp 396 neo-epitope in different cancers during chemotherapy. Anticancer Res 26:2387–2392

    PubMed  CAS  Google Scholar 

  74. Platoshyn O, Zhang S, McDaniel SS, Yuan JX (2002) Cytochrome c activates K+ channels before inducing apoptosis. Am J Physiol Cell Physiol 283:C1298–C1305

    PubMed  CAS  Google Scholar 

  75. Radic M, Marion T, Monestier M (2004) Nucleosomes are exposed at the cell surface in apoptosis. J Immunol 172:6692–6700

    PubMed  CAS  Google Scholar 

  76. Rantalainen M, Cloarec O, Beckonert O, Wilson ID, Jackson D, Tonge R, Rowlinson R, Rayner S, Nickson J, Wilkinson RW, Mills JD, Trygg J, Nicholson JK, Holmes E (2006) Statistically integrated metabonomic-proteomic studies on a human prostate cancer xenograft model in mice. J Proteome Res 5:2642–2655

    PubMed  CAS  Google Scholar 

  77. Rathmell JC, Thompson CB (2002) Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell 109(Suppl):S97–S107

    PubMed  CAS  Google Scholar 

  78. Renz A, Berdel WE, Kreuter M, Belka C, Schulze-Osthoff K, Los M (2001) Rapid extracellular release of cytochrome c is specific for apoptosis and marks cell death in vivo. Blood 98:1542–1548

    PubMed  CAS  Google Scholar 

  79. Sayar D, Yaniv I, Goshen Y, Cohen IJ (2001) Treatment of alpha-fetoprotein secreting hepatoblastoma by response of serum alpha-fetoprotein levels: a new concept. Pediatr Hematol Oncol 18:509–518

    PubMed  CAS  Google Scholar 

  80. Screpanti V, Wallin RP, Grandien A, Ljunggren HG (2005) Impact of FASL-induced apoptosis in the elimination of tumor cells by NK cells. Mol Immunol 42:495–499

    PubMed  CAS  Google Scholar 

  81. Sellins KS, Cohen JJ (1987) Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes. J Immunol 139:3199–3206

    PubMed  CAS  Google Scholar 

  82. Serrano M (2007) Cancer regression by senescence. N Engl J Med 356:1996–1997

    PubMed  CAS  Google Scholar 

  83. Sheard MA, Vojtesek B, Simickova M, Valik D (2002) Release of cytokeratin-18 and -19 fragments (TPS and CYFRA 21-1) into the extracellular space during apoptosis. J Cell Biochem 85:670–677

    PubMed  CAS  Google Scholar 

  84. Sherley JL, Kelly TJ (1988) Regulation of human thymidine kinase during the cell cycle. J Biol Chem 263:8350–8358

    PubMed  CAS  Google Scholar 

  85. Skladanowski A, Konopa J (1993) Adriamycin and daunomycin induce programmed cell death (apoptosis) in tumour cells. Biochem Pharmacol 46:375–382

    PubMed  CAS  Google Scholar 

  86. Smalley M, Ashworth A (2003) Stem cells and breast cancer: a field in transit. Nat Rev Cancer 3:832–844

    PubMed  CAS  Google Scholar 

  87. Sorace JM, Zhan M (2003) A data review and re-assessment of ovarian cancer serum proteomic profiling. BMC Bioinf 4:24

    Google Scholar 

  88. Sorbye H, Dahl O (2003) Carcinoembryonic antigen surge in metastatic colorectal cancer patients responding to oxaliplatin combination chemotherapy: implications for tumor marker monitoring and guidelines. J Clin Oncol 21:4466–4467

    PubMed  Google Scholar 

  89. Sorbye H, Dahl O (2004) Transient CEA increase at start of oxaliplatin combination therapy for metastatic colorectal cancer. Acta Oncol 43:495–498

    PubMed  CAS  Google Scholar 

  90. Stefflova K, Chen J, Li H, Zheng G (2006) Targeted photodynamic therapy agent with a built-in apoptosis sensor for in vivo near-infrared imaging of tumor apoptosis triggered by its photosensitization in situ. Mol Imaging 5:520–532

    PubMed  Google Scholar 

  91. Steinhusen U, Weiske J, Badock V, Tauber R, Bommert K, Huber O (2001) Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem 276:4972–4980

    PubMed  CAS  Google Scholar 

  92. Strater J, Koretz K, Gunthert AR, Moller P (1995) In situ detection of enterocytic apoptosis in normal colonic mucosa and in familial adenomatous polyposis. Gut 37:819–825

    PubMed  CAS  Google Scholar 

  93. Su H, Bodenstein C, Dumont RA, Seimbille Y, Dubinett S, Phelps ME, Herschman H, Czernin J, Weber W (2006) Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res 12:5659–5667

    PubMed  CAS  Google Scholar 

  94. Trejo-Becerril C, Perez-Cardenas E, Trevino-Cuevas H, Taja-Chayeb L, Garcia-Lopez P, Segura-Pacheco B, Chavez-Blanco A, Lizano-Soberon M, Gonzalez-Fierro A, Mariscal I, Wegman-Ostrosky T, Duenas-Gonzalez A (2003) Circulating nucleosomes and response to chemotherapy: an in vitro, in vivo and clinical study on cervical cancer patients. Int J Cancer 104:663–668

    PubMed  CAS  Google Scholar 

  95. Uchimura E, Kodaira T, Kurosaka K, Yang D, Watanabe N, Kobayashi Y (1997) Interaction of phagocytes with apoptotic cells leads to production of pro-inflammatory cytokines. Biochem Biophys Res Commun 239:799–803

    PubMed  CAS  Google Scholar 

  96. Ueno T, Toi M, Biven K, Bando H, Ogawa T, Linder S (2003) Measurement of an apoptotic product in the sera of breast cancer patients. Eur J Cancer 39:769–774

    PubMed  CAS  Google Scholar 

  97. Van de Wiele C, Lahorte C, Oyen W, Boerman O, Goethals I, Slegers G, Dierckx RA (2003) Nuclear medicine imaging to predict response to radiotherapy: a review. Int J Radiat Oncol Biol Phys 55:5–15

    PubMed  Google Scholar 

  98. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665

    PubMed  CAS  Google Scholar 

  99. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51

    PubMed  CAS  Google Scholar 

  100. Vicini FA, Vargas C, Abner A, Kestin L, Horwitz E, Martinez A (2005) Limitations in the use of serum prostate specific antigen levels to monitor patients after treatment for prostate cancer. J Urol 173:1456–1462

    PubMed  CAS  Google Scholar 

  101. Villanueva J, Shaffer DR, Philip J, Chaparro CA, Erdjument-Bromage H, Olshen AB, Fleisher M, Lilja H, Brogi E, Boyd J, Sanchez-Carbayo M, Holland EC, Cordon-Cardo C, Scher HI, Tempst P (2006) Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest 116:271–284

    PubMed  CAS  Google Scholar 

  102. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–163

    PubMed  CAS  Google Scholar 

  103. Weinberg RA (2007) (eds) The biology of cancer. Garland Science, Taylor and Francis Group, LLC, New York

  104. Wells MJ, Hatton MW, Hewlett B, Podor TJ, Sheffield WP, Blajchman MA (1997) Cytokeratin 18 is expressed on the hepatocyte plasma membrane surface and interacts with thrombin–antithrombin complexes. J Biol Chem 272:28574–28581

    PubMed  CAS  Google Scholar 

  105. Werner-Wasik M, Xiao Y, Pequignot E, Curran WJ, Hauck W (2001) Assessment of lung cancer response after nonoperative therapy: tumor diameter, bidimensional product, and volume. A serial CT scan-based study. Int J Radiat Oncol Biol Phys 51:56–61

    PubMed  CAS  Google Scholar 

  106. Wickremesekera JK, Chen W, Cannan RJ, Stubbs RS (2001) Serum proinflammatory cytokine response in patients with advanced liver tumors following selective internal radiation therapy (SIRT) with (90)Yttrium microspheres. Int J Radiat Oncol Biol Phys 49:1015–1021

    PubMed  CAS  Google Scholar 

  107. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    PubMed  CAS  Google Scholar 

  108. Yamauchi K, Yang M, Jiang P, Xu M, Yamamoto N, Tsuchiya H, Tomita K, Moossa AR, Bouvet M, Hoffman RM (2006) Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Res 66:4208–4214

    PubMed  CAS  Google Scholar 

  109. Yu J, Yue W, Wu B, Zhang L (2006) PUMA sensitizes lung cancer cells to chemotherapeutic agents and irradiation. Clin Cancer Res 12:2928–2936

    PubMed  Google Scholar 

  110. Zhang J, Driscoll TA, Hannun YA, Obeid LM (1998) Regulation of membrane release in apoptosis. Biochem J 334(Pt 2):479–485

    PubMed  CAS  Google Scholar 

  111. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Repasky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beachy, S.H., Repasky, E.A. Using extracellular biomarkers for monitoring efficacy of therapeutics in cancer patients: an update. Cancer Immunol Immunother 57, 759–775 (2008). https://doi.org/10.1007/s00262-007-0445-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0445-6

Keywords