Skip to main content

Advertisement

Log in

Detection of circulating tumor lysate–reactive CD4+ T cells in melanoma patients

  • Short Communication
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose: We wanted to study whether an allogeneic melanoma lysate would be a feasible stimulatory antigen source for detection of a peripheral CD4+ T-cell immune response in patients with medically untreated malignant melanoma. The lysate was produced from a melanoma cell line (FM3.29) which expresses high amounts of melanoma antigens. Methods: Fresh peripheral blood was incubated with and without lysate for 6 h in the presence of anti-CD28/anti-CD49d MoAb (for costimulation). After flow cytometric estimation of the frequency of CD69+/IFN-γ+ cells in the CD4+ population, the response to lysate was calculated as the difference between the number of activated IFN-γ-producing CD4+ cells in the lysate-stimulated and the nonstimulated sample. Results: An immune response to lysate was observed in blood samples from 11 of 15 patients (73%) with metastatic melanoma. A weak response was found in 1 of 4 patients radically operated for localized disease, whereas no responders were seen among 7 healthy donors. The fraction of circulating lysate-activated T cells ranged from 0.0037% to 0.080% of the CD4+ population. A negative result of the assay was found occasionally, especially in donors with high background levels of spontaneous IFN-γ production, indicating an inhibitory effect of the lysate. Conclusions: This method for detection of a peripheral T-cell immune response in melanoma patients has several advantages for clinical use. The tumor lysate preparations may contain large numbers of stimulating antigens (known, as well as unknown) and are easily prepared and handled. Potentially, the assay might be useful as a diagnostic tool, a marker of residual or recurrent disease, a prognostic factor, or a predictor or monitor of the effect of antineoplastic therapy including immune-modulating therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Aebersold P, Kasid A, Rosenberg SA (1990) Selection of gene-marked tumor infiltrating lymphocytes from post-treatment biopsies: a case study. Hum Gene Ther 1:373

    CAS  PubMed  Google Scholar 

  2. Altman JD, Moss PA, Goulder PJ et al (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274:94

    CAS  PubMed  Google Scholar 

  3. American Joint Committee on Cancer (2001) AJCC cancer staging manual, 5th edn. Lippincott-Raven, Philadelphia

  4. Bucharov G, Klenerman P, Ehl S (2001) Predicting the dynamics of antiviral cytotoxic T-cell memory in response to different stimuli: cell population structure and protective function. Immunol Cell Biol 79:74

    Article  PubMed  Google Scholar 

  5. Chang JW, Peng M, Vaquerano JE et al (2000) Induction of Th1 response by dendritic cells pulsed with autologous melanoma apoptotic bodies. Anticancer Res 20:1329

    CAS  PubMed  Google Scholar 

  6. Dunbar PR, Ogg GS, Chen J et al (1998) Direct isolation, phenothyping and cloning of low-frequency antigen-specific cytotoxic T lymphocytes from pheripheral blood. Curr Biol 8:413

    CAS  PubMed  Google Scholar 

  7. Egilmez NK, Hess SD, Chen FA et al (2002) Human CD4+ effector T cells mediate indirect interleukin-12- and interferon-gamma-dependent suppression of autologous HLA-negative lung tumor xenografts in severe combined immunodeficient mice. Cancer Res 62:2611

    CAS  PubMed  Google Scholar 

  8. Faure F, Even J, Kourilsky P (1998) Tumor-specific immune response: current in vitro analyses may not reflect the in vivo immune status. Crit Rev Immunol 18:77

    CAS  PubMed  Google Scholar 

  9. Griffith, KD, Read EJ, Carrasquillo JA et al (1989) In vivo distribution of adoptively transferred Indium-111-labeled tumor infiltrating lymphocytes and peripheral blood lymphocytes in patients with metastatic melanoma. J Natl Cancer Inst 81:1709

    CAS  PubMed  Google Scholar 

  10. Hanson HL, Donermeyer DL, Ikeda H et al (2000) Eradication of established tumors by CD8+ T cell adoptive immunotherapy. Immunity 13:265

    CAS  PubMed  Google Scholar 

  11. Kammula US, Marincola FM, Rosenberg SA (2001) Real-time quantitative polymerase chain reaction assessment of immune reactivity in melanoma patients after tumor peptide vaccination. J Natl Cancer Inst 92:1336

    Article  Google Scholar 

  12. Kawakami Y, Rosenberg SA (1997) Human tumor antigens recognized by T-cells. Immunol Res 16:313

    CAS  PubMed  Google Scholar 

  13. Kirkin AF, thor Straten P, Hansen MR et al (1999) Establishment of gp100 and MART-1/Melan-A-specific cytotoxic T lymphocyte clones using in vitro immunization against preselected highly immunogenic melanoma cell clones. Cancer Immunol Immunother 48:239

    Article  CAS  PubMed  Google Scholar 

  14. Lee PP, Yee C, Savage PA et al (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5:677

    CAS  PubMed  Google Scholar 

  15. Letsch A, Keilholz U, Schadendorf D et al (2000) High frequencies of circulating melanoma-reactive CD8+ T cells in patients with advanced melanoma. Int J Cancer 87:659

    Article  CAS  PubMed  Google Scholar 

  16. McCutcheon M, Wehner N, Wensky A et al (1997) A sensitive ELISPOT assay to detect low-frequency human T lymphocytes. J Immunol Methods 210:149

    CAS  PubMed  Google Scholar 

  17. Nagorsen D, Keilholz U, Rivoltini L et al (2000) Natural T-cell response against MHC class I epitopes of epithelial cell adhesion molecule, her-2/neu, and carcinoembryonic antigen in patients with colorectal cancer. Cancer Res 60:4850

    CAS  PubMed  Google Scholar 

  18. Nair SK, Boczkowski D, Snyder D et al (1997) Antigen-presenting cells pulsed with unfractionated tumor-derived peptides are potent tumor vaccines. Eur J Immunol 27:589

    CAS  PubMed  Google Scholar 

  19. Nomura LE, Walker JM, Maecker HT (2000) Optimization of whole blood antigen-specific cytokine assays for CD4(+) T cells. Cytometry 40:60

    Article  CAS  PubMed  Google Scholar 

  20. Panelli MC, Wang E, Monsurro V et al (2002) The role of quantitative PCR for the immune monitoring of cancer patients. Expert Opin Biol Ther 2:537

    PubMed  Google Scholar 

  21. Pittet MJ, Valmori D, Dunbar PR et al (1999) High frequencies of naive Melan-A/MART-1-specific CD8+ T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J Exp Med 190:705

    Article  CAS  PubMed  Google Scholar 

  22. Santin AD, Hermonat PL, Ravaggi A et al (2000) In vitro induction of tumor-specific human lymphocyte antigen class I-restricted CD8+ cytotoxic T lymphocytes by ovarian tumor antigen-pulsed autologous dendritic cells from patients with advanced ovarian cancer. Am J Obstet Gynecol 183:601

    Article  CAS  PubMed  Google Scholar 

  23. Scheibenbogen C, Sun Y, Keilholz U et al (2002) Identification of known and novel immunogeneic T-cell epitopes from tumor antigens recognized by peripheral blood T cells from patients responding to IL-2-based treatment. Int J Cancer 98:409

    Article  CAS  PubMed  Google Scholar 

  24. Schmittel A, Keilholz U, Max R et al (2001) Induction of tyrosinase-reactive T cells by treatment with dacarbazine, cisplatin, interferon-alpha +/- interleukin-2 in patients with metastatic melanoma. Int J Cancer 80:39

    Article  Google Scholar 

  25. Speiser DE, Lienard D, Pittet MJ et al (2002) In vivo activation of melanoma-specific CD8(+) T cells by endogenous tumor antigen and peptide vaccines: a comparison to virus-specific T cells. Eur J Immunol 32:731

    Article  CAS  PubMed  Google Scholar 

  26. Sprent J, Surh CD (2001) Generation and maintenance of memory T cells. Curr Opin Immunol 13:248

    Article  CAS  PubMed  Google Scholar 

  27. thor Straten P, Becker JC, Guldberg P et al (1999) In situ T cells in melanoma. Cancer Immunol Immunother 34:386

    Google Scholar 

  28. thor Straten P, Kirkin AF, Siim E et al (2000) Tumor infiltrating lymphocytes in melanoma comprise high numbers of T-cell clonotypes that are lost during in vitro culture. Clin Immunol 96:94

    Article  PubMed  Google Scholar 

  29. Van Waes C, Urban JL, Rothstein JL et al (1986) Highly malignant tumor variants retain tumor-specific antigens recognized by T helper cells. J Exp Med 164:1547

    PubMed  Google Scholar 

  30. Wang R-F (1999) Human tumor antigens: implications for cancer vaccine development. J Mol Med 77:640

    Article  CAS  PubMed  Google Scholar 

  31. Yee C, Riddell SR, Greenberg PD (2001) In vivo tracking of tumor-specific T cells. Curr Opin Immunol 13:141

    Article  CAS  PubMed  Google Scholar 

  32. Zier K, Johnson K, Maddux J-M et al (2000) IFNgamma secretion following stimulation with total tumor peptides from autologous human tumors. J Immunol Methods 241:61

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Ladekarl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladekarl, M., Agger, R., Fleischer, C.C. et al. Detection of circulating tumor lysate–reactive CD4+ T cells in melanoma patients. Cancer Immunol Immunother 53, 560–566 (2004). https://doi.org/10.1007/s00262-004-0502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0502-3

Keywords

Navigation