Skip to main content
Log in

Long-term renal function outcomes after renal cryoablation complicated by major hemorrhage requiring selective transarterial embolization

  • Interventional Radiology
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To determine long-term renal function outcomes after renal cryoablation complicated by major hemorrhage requiring transarterial embolization compared to patients who underwent uncomplicated renal cryoablation without major hemorrhage.

Methods

Utilizing a matched cohort study design, retrospective review identified 23 patients who underwent percutaneous image-guided renal cryoablation complicated by major hemorrhage requiring ipsilateral transarterial embolization (TAE group) and a control group of 23 patients who underwent uncomplicated renal cryoablation matched 1:1 by age, gender and RENAL Nephrometry score at a single institution from 1/1/2005 to 12/31/2019. Primary outcome parameters included change in creatinine (mg/dl) and estimated glomerular filtration rate (ml/min/1.73 m2; eGFR) from baseline and were compared between TAE and control group using a paired t-test.

Results

There was a significantly higher proportion of patients on pre-ablation anticoagulation in the TAE v. control group (30% v. 4%; p = 0.047), but all patients were off anticoagulation and with normal coagulation parameters at the time of cryoablation. Otherwise there were no significant differences in clinical, renal tumor, Charlson co-morbidity index, baseline renal function or cryoablation parameters between the TAE and control group. In the post-ablation period, there was trend toward greater increase in creatinine from baseline to worst post-ablation creatinine in the TAE v. the control group (+ 0.5 ± 0.7 mg/dl v. 0.2 ± 0.1 mg/dl; p = 0.056). However, at a mean follow-up of 42.7 ± 35.7 months, there was no significant difference between the TAE and control group in creatinine (p = 0.68), eGFR (p = 0.60) or change from baseline in creatinine (p = 0.28), eGFR (p = 0.80) or CKD stage (p = 0.74). No patient required initiation of hemodialysis.

Conclusion

Selective transarterial embolization for post-renal cryoablation hemorrhage does not significantly affect long-term renal function compared to cryoablation alone. Pre-ablation anticoagulation despite normal coagulation at time of ablation may be a risk factor for post-ablation hemorrhage, and warrants further evaluation when considering pre-ablation embolization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. National Comprehensive Cancer Network. Kidney Cancer. (Version 4.2021). Available from https://www.nccn.org/professionals/physician_gls/pdf/kidney.pdf. Accessed 23 June 2021.

  2. Bamias A, Escudier B, Sternberg CN, Zagouri F, Dellis A, Djavan B, et al. Current Clinical Practice Guidelines for the Treatment of Renal Cell Carcinoma: A Systematic Review and Critical Evaluation. Oncologist. 2017;22(6):667-79.

    Article  Google Scholar 

  3. Campbell SC, Novick AC, Belldegrun A, Blute ML, Chow GK, Derweesh IH, et al. Guideline for management of the clinical T1 renal mass. J Urol. 2009;182(4):1271-9.

    Article  Google Scholar 

  4. Georgiades C, Rodriguez R. Renal tumor ablation. Tech Vasc Interv Radiol. 2013;16(4):230-8.

    Article  Google Scholar 

  5. Krokidis ME, Orsi F, Katsanos K, Helmberger T, Adam A. CIRSE Guidelines on Percutaneous Ablation of Small Renal Cell Carcinoma. Cardiovasc Intervent Radiol. 2017;40(2):177-91.

    Article  Google Scholar 

  6. Atwell TD, Callstrom MR, Farrell MA, Schmit GD, Woodrum DA, Leibovich BC, et al. Percutaneous renal cryoablation: local control at mean 26 months of followup. J Urol. 2010;184(4):1291-5.

    Article  Google Scholar 

  7. Mason RJ, Atwell TD, Lohse C, Bhindi B, Weisbrod A, Boorjian SA, et al. Renal functional outcomes in patients undergoing percutaneous cryoablation or partial nephrectomy for a solitary renal mass. BJU Int. 2017;120(4):544-9.

    Article  Google Scholar 

  8. Ramani AP, Desai MM, Steinberg AP, Ng CS, Abreu SC, Kaouk JH, et al. Complications of laparoscopic partial nephrectomy in 200 cases. J Urol. 2005;173(1):42-7.

    Article  Google Scholar 

  9. Olweny EO, Park SK, Tan YK, Best SL, Trimmer C, Cadeddu JA. Radiofrequency ablation versus partial nephrectomy in patients with solitary clinical T1a renal cell carcinoma: comparable oncologic outcomes at a minimum of 5 years of follow-up. Eur Urol. 2012;61(6):1156-61.

    Article  Google Scholar 

  10. Thompson RH, Atwell T, Schmit G, Lohse CM, Kurup AN, Weisbrod A, et al. Comparison of partial nephrectomy and percutaneous ablation for cT1 renal masses. Eur Urol. 2015;67(2):252-9.

    Article  Google Scholar 

  11. Andrews JR, Atwell T, Schmit G, Lohse CM, Kurup AN, Weisbrod A, et al. Oncologic Outcomes Following Partial Nephrectomy and Percutaneous Ablation for cT1 Renal Masses. Eur Urol. 2019;76(2):244-51.

    Article  Google Scholar 

  12. Atwell TD, Carter RE, Schmit GD, Carr CM, Boorjian SA, Curry TB, et al. Complications following 573 percutaneous renal radiofrequency and cryoablation procedures. J Vasc Interv Radiol. 2012;23(1):48-54.

    Article  Google Scholar 

  13. Kakarala B, Frangakis CE, Rodriguez R, Georgiades CS. Hemorrhagic Complications of Percutaneous Cryoablation for Renal Tumors: Results from a 7-year Prospective Study. Cardiovasc Intervent Radiol. 2016;39(11):1604-10.

    Article  Google Scholar 

  14. Schmit CH, Callstrom MR, Boorjian SA, Johnson MP, Atwell TD, Kurup AN, et al. A Comparison of Bleeding Complications in Patients Undergoing Percutaneous Renal Cryoablation Using Cryoprobes with and without Heat-Based Track Ablation. J Vasc Interv Radiol. 2018;29(6):874-9.

    Article  Google Scholar 

  15. Guneyli S, Gok M, Bozkaya H, Cinar C, Tizro A, Korkmaz M, et al. Endovascular management of iatrogenic renal arterial lesions and clinical outcomes. Diagn Interv Radiol. 2015;21(3):229-34.

    Article  Google Scholar 

  16. Hyams ES, Pierorazio P, Proteek O, Sukumar S, Wagner AA, Mechaber JL, et al. Iatrogenic vascular lesions after minimally invasive partial nephrectomy: a multi-institutional study of clinical and renal functional outcomes. Urology. 2011;78(4):820-6.

    Article  Google Scholar 

  17. Loffroy R, Guiu B, Lambert A, Mousson C, Tanter Y, Martin L, et al. Management of post-biopsy renal allograft arteriovenous fistulas with selective arterial embolization: immediate and long-term outcomes. Clin Radiol. 2008;63(6):657-65.

    Article  CAS  Google Scholar 

  18. Mavili E, Donmez H, Ozcan N, Sipahioglu M, Demirtas A. Transarterial embolization for renal arterial bleeding. Diagn Interv Radiol. 2009;15(2):143-7.

    PubMed  Google Scholar 

  19. Muller A, Rouviere O. Renal artery embolization-indications, technical approaches and outcomes. Nat Rev Nephrol. 2015;11(5):288-301.

    Article  Google Scholar 

  20. Perini S, Gordon RL, LaBerge JM, Kerlan RK, Jr., Wilson MW, Feng S, et al. Transcatheter embolization of biopsy-related vascular injury in the transplant kidney: immediate and long-term outcome. J Vasc Interv Radiol. 1998;9(6):1011-9.

    Article  CAS  Google Scholar 

  21. Sam K, Gahide G, Soulez G, Giroux MF, Oliva VL, Perreault P, et al. Percutaneous embolization of iatrogenic arterial kidney injuries: safety, efficacy, and impact on blood pressure and renal function. J Vasc Interv Radiol. 2011;22(11):1563-8.

    Article  Google Scholar 

  22. Woodrum DA, Atwell TD, Farrell MA, Andrews JC, Charboneau JW, Callstrom MR. Role of intraarterial embolization before cryoablation of large renal tumors: a pilot study. J Vasc Interv Radiol. 2010;21(6):930-6.

    Article  Google Scholar 

  23. Collins CS, Eggert CH, Stanson AJ, Garovic VD. Long-term follow-up of renal function and blood pressure after selective renal arterial embolization. Perspect Vasc Surg Endovasc Ther. 2010;22(4):254-60.

    Article  Google Scholar 

  24. Jacobson AI, Amukele SA, Marcovich R, Shapiro O, Shetty R, Aldana JP, et al. Efficacy and morbidity of therapeutic renal embolization in the spectrum of urologic disease. J Endourol. 2003;17(6):385-91.

    Article  Google Scholar 

  25. Poulakis V, Ferakis N, Becht E, Deliveliotis C, Duex M. Treatment of renal-vascular injury by transcatheter embolization: immediate and long-term effects on renal function. J Endourol. 2006;20(6):405-9.

    Article  Google Scholar 

  26. Patel HD, Pierorazio PM, Johnson MH, Sharma R, Iyoha E, Allaf ME, et al. Renal Functional Outcomes after Surgery, Ablation, and Active Surveillance of Localized Renal Tumors: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol. 2017;12(7):1057-69.

    Article  Google Scholar 

  27. Kutikov A, Uzzo RG. The R.E.N.A.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol. 2009;182(3):844-53.

    Article  Google Scholar 

  28. Schmit GD, Schenck LA, Thompson RH, Boorjian SA, Kurup AN, Weisbrod AJ, et al. Predicting renal cryoablation complications: new risk score based on tumor size and location and patient history. Radiology. 2014;272(3):903-10.

    Article  Google Scholar 

  29. de Graaf MA, Jager KJ, Zoccali C, Dekker FW. Matching, an appealing method to avoid confounding? Nephron Clin Pract. 2011;118(4):c315-8.

    Article  Google Scholar 

  30. Marconi L, Dabestani S, Lam TB, Hofmann F, Stewart F, Norrie J, et al. Systematic Review and Meta-analysis of Diagnostic Accuracy of Percutaneous Renal Tumour Biopsy. Eur Urol. 2016;69(4):660-73.

    Article  Google Scholar 

  31. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, et al. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019;95:103208.

    Article  Google Scholar 

  32. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377-81.

    Article  Google Scholar 

  33. Li J, Li Z, Jiao DC, Si G, Zhou X, Li Y, et al. Clinical outcomes after selective renal artery embolization combined with DynaCT-guided microwave ablation for T1a renal-cell carcinoma: case series. Clin Genitourin Cancer. 2021;19(1):e1-e5.

    Article  Google Scholar 

  34. Austin PC. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivariate Behav Res. 2011;46(3):399-424.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. Thompson.

Ethics declarations

Conflict of interest

No conflicts of interest related to content of manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McElroy, K.M., Reisenauer, C.J., Welch, B.T. et al. Long-term renal function outcomes after renal cryoablation complicated by major hemorrhage requiring selective transarterial embolization. Abdom Radiol 46, 4898–4907 (2021). https://doi.org/10.1007/s00261-021-03182-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03182-w

Navigation