Skip to main content

Advertisement

Log in

Are we at a crossroads or a plateau? Radiomics and machine learning in abdominal oncology imaging

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Advances in radiomics and machine learning have driven a technology boom in the automated analysis of radiology images. For the past several years, expectations have been nearly boundless for these new technologies to revolutionize radiology image analysis and interpretation. In this editorial, I compare the expectations with the realities with particular attention to applications in abdominal oncology imaging. I explore whether these technologies will leave us at a crossroads to an exciting future or to a sustained plateau and disillusionment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Reproduced from Ref. [18]

Fig. 2

Reproduced from [28]

Fig. 3

Reproduced from [36]

Similar content being viewed by others

References

  1. Greenspan H, van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35(5):1153–1159

    Article  Google Scholar 

  2. Litjens G, Kooi T, Bejnordi BE, et al. (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  PubMed  Google Scholar 

  3. Kontos D, Summers RM, Giger M (2017) Special section guest editorial: radiomics and deep learning. J Med Imaging (Bellingham) 4(4):041301

    Google Scholar 

  4. Summers RM (2016) Progress in fully automated abdominal CT interpretation. AJR Am J Roentgenol 207(1):67–79

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yan K, Wang X, Lu L, et al (2018) Deep lesion graphs in the wild: relationship learning and organization of significant radiology image findings in a diverse large-scale lesion database. http://arxiv.org/abs/1711.10535. (Accepted by IEEE CVPR, 2018)

  6. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted interventional (MICCAI), Part III, LNCS 9351, pp. 234–241.

  7. Summers RM (2016) Texture analysis in radiology: does the emperor have no clothes? Abdom Radiol (NY) 42(2): 342–345

  8. Roth HR, Lu L, Farag A, et al. (2015) DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: MICCAI 2015, Part I, LNCS 9349. Springer, Cham, pp. 556–564

  9. Zhou Y, Xie L, Shen W, et al. (2017) A fixed-point model for pancreas segmentation in abdominal CT scans. Cham: Springer, pp 693–701

    Google Scholar 

  10. Gulshan V, Peng L, Coram M, et al. (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410

    Article  PubMed  Google Scholar 

  11. Esteva A, Kuprel B, Novoa RA, et al. (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118

    Article  CAS  PubMed  Google Scholar 

  12. Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284(2):574–582

    Article  PubMed  Google Scholar 

  13. Larson DB, Chen MC, Lungren MP, et al. (2018) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287(1):313–322

    Article  PubMed  Google Scholar 

  14. Smith AD, Gray MR, del Campo SM, et al. (2015) Predicting overall survival in patients with metastatic melanoma on antiangiogenic therapy and RECIST stable disease on initial posttherapy images using CT texture analysis. AJR Am J Roentgenol 205(3):W283–W293

    Article  PubMed  Google Scholar 

  15. Lovinfosse P, Polus M, Van Daele D, et al. (2018) FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur J Nucl Med Mol Imaging 45(3):365–375

    Article  PubMed  Google Scholar 

  16. Zhang W, Liu J, Yao J, et al. (2013) Mesenteric vasculature-guided small bowel segmentation on 3-D CT. IEEE Trans Med Imaging 32(11):2006–2021

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cherry KM, Peplinski B, Kim L, et al. (2015) Sequential Monte Carlo tracking of the marginal artery by multiple cue fusion and random forest regression. Med Image Anal 19(1):164–175

    Article  PubMed  Google Scholar 

  18. Liu JM, Wang D, Lu L, et al. (2017) Detection and diagnosis of colitis on computed tomography using deep convolutional neural networks. Med Phys 44(9):4630–4642

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ben-Cohen A, Klang E, Diamant I, et al. (2015) Automated method for detection and segmentation of liver metastatic lesions in follow-up CT examinations. J Med Imaging (Bellingham) 2(3):034502

    Article  Google Scholar 

  20. Linguraru MG, Richbourg WJ, Liu J, et al. (2012) Tumor burden analysis on computed tomography by automated liver and tumor segmentation. IEEE Trans Med Imaging 31(10):1965–1976

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hoogi A, Beaulieu CF, Cunha GM, et al. (2017) Adaptive local window for level set segmentation of CT and MRI liver lesions. Med Image Anal 37:46–55

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hame Y, Pollari M (2012) Semi-automatic liver tumor segmentation with hidden Markov measure field model and non-parametric distribution estimation. Med Image Anal 16(1):140–149

    Article  PubMed  Google Scholar 

  23. O’Connor SD, Yao J, Summers RM (2007) Lytic metastases in thoracolumbar spine: computer-aided detection at CT–preliminary study. Radiology 242(3):811–816

    Article  PubMed  Google Scholar 

  24. Burns JE, Yao J, Wiese TS, et al. (2013) Automated detection of sclerotic metastases in the thoracolumbar spine at CT. Radiology 268(1):69–78

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yao J, Burns JE, Sanoria V, Summers RM (2017) Mixed spine metastasis detection through positron emission tomography/computed tomography synthesis and multiclassifier. J Med Imaging (Bellingham) 4(2):024504

    Article  Google Scholar 

  26. Solomon J, Mavinkurve S, Cox D, Summers RM (2004) Computer-assisted detection of subcutaneous melanomas: feasibility assessment. Acad Radiol 11(6):678–685

    Article  PubMed  Google Scholar 

  27. Cha K, Hadjiiski L, Chan HP, et al. (2015) Detection of urinary bladder mass in CT urography with SPAN. Med Phys 42(7):4271–4284

    Article  PubMed  PubMed Central  Google Scholar 

  28. Roth HR, Lu L, Seff A, et al. (2014) A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. Med Image Comput Comput Assist Interv 17(Pt 1):520–527

  29. Seff A, Lu L, Barbu A, Roth H, Shin H-C, Summers RM (2015) Leveraging mid-level semantic boundary cues for automated lymph node detection. In: Medical image computing and computer-assisted intervention (MICCAI). Springer, Berlin, pp. 53–61

  30. Nogues I, Lu L, Wang X, et al. (2016) Automatic lymph node cluster segmentation using holistically-nested neural networks and structured optimization in CT images. In: Ourselin S, Joskowicz L, Sabuncu M, Unal G, Wells W (eds) MICCAI, Part II, LNCS vol 9901, pp 388–397

    Google Scholar 

  31. Roth HR, Lu L, Seff A, et al. (2015) CT lymph nodes. https://doi.org/10.7937/K9/TCIA.2015.AQIIDCNM

  32. Liu JF, Wang SJ, Linguraru MG, Yao JH, Summers RM (2014) Tumor sensitive matching flow: a variational method to detecting and segmenting perihepatic and perisplenic ovarian cancer metastases on contrast-enhanced abdominal CT. Med Image Anal 18(5):725–739

    Article  PubMed  PubMed Central  Google Scholar 

  33. Clark T, Zhang J, Baig S, et al. (2017) Fully automated segmentation of prostate whole gland and transition zone in diffusion-weighted MRI using convolutional neural networks. J Med Imaging (Bellingham) 4(4):041307

    Google Scholar 

  34. Tian Z, Liu L, Zhang Z, Fei B (2018) PSNet: prostate segmentation on MRI based on a convolutional neural network. J Med Imaging (Bellingham) 5(2):021208

    Google Scholar 

  35. Cheng R, Roth HR, Lay N, et al. (2017) Automatic magnetic resonance prostate segmentation by deep learning with holistically nested networks. J Med Imaging (Bellingham) 4(4):041302

    Google Scholar 

  36. Lay N, Tsehay Y, Greer MD, et al. (2017) Detection of prostate cancer in multiparametric MRI using random forest with instance weighting. J Med Imaging 4(2):024506

    Article  Google Scholar 

  37. Lugo-Fagundo C, Vogelstein B, Yuille A, Fishman EK (2018) Deep learning in radiology: now the real work begins. J Am Coll Radiol 15(2):364–367

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald M. Summers.

Ethics declarations

Funding

This study was funded by the Intramural Research Program of the National Institutes of Health, Clinical Center (Grant Number 1Z01 CL040004).

Conflicts of interest

The author has pending and/or awarded patents for automated image analyses, and received royalty income from iCAD, Zebra Medical, Imbio, ScanMed and Koninklijke Philips. His lab received research support from Ping An Technology Company Ltd. and NVIDIA.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

N/A.

Additional information

This work is dedicated to the memory of my former colleague, Andrew Dwyer, MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Summers, R.M. Are we at a crossroads or a plateau? Radiomics and machine learning in abdominal oncology imaging. Abdom Radiol 44, 1985–1989 (2019). https://doi.org/10.1007/s00261-018-1613-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-018-1613-1

Keywords

Navigation