Skip to main content

Advertisement

Log in

In vivo comparison of two navigation systems for abdominal percutaneous needle intervention

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To compare the accuracy of a Kinect-Optical navigation system with an electromagnetic (EM) navigation system for percutaneous liver needle intervention.

Materials and methods

Five beagles with nine artificial tumors were used for validation. The Veran IG4 EM navigation system and a custom-made Kinect-Optical navigation system were used. Needle insertions into each tumor were conducted with these two guidance methods. The target positioning error (TPE) and the time cost of the puncture procedures were evaluated.

Results

A total of 18 needle insertions were performed to evaluate the navigation accuracy of the two guidance approaches. The targeting error was 6.78 ± 3.22 mm and 8.72 ± 3.5 mm for the Kinect-Optical navigation system and the EM navigation system, respectively. There is no statistically significant difference in the TPE between the Kinect-Optical navigation system and the EM navigation system (p = 0.229). The processing time with the Kinect-Optical system (10 min) is similar to that of the Veran IG4 system (12 min).

Conclusions

The accuracy of the Kinect-Optical navigation system is comparable to that of the EM navigation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McGahan JP, Dodd GD III (2001) Radiofrequency ablation of the liver: current status. Am J Roentgenol 176(1):3–16

    Article  Google Scholar 

  2. Goldberg SN, Grassi CJ, Cardella JF, et al. (2009) Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol 20(7):S377–S390

    Article  PubMed  Google Scholar 

  3. Krücker J, Xu S, Glossop N, et al. (2007) Electromagnetic tracking for thermal ablation and biopsy guidance: clinical evaluation of spatial accuracy. J Vasc Interv Radiol 18(9):1141–1150

    Article  PubMed  PubMed Central  Google Scholar 

  4. Peters TM (2006) Image-guidance for surgical procedures. Phys Med Biol 51(14):R505

    Article  PubMed  Google Scholar 

  5. Yaniv Z, Cleary K (2006) Image-guided procedures: a review. Technical Report CAIMR TR-2006-3, Georgetown University, Washington, DC, USA

  6. Banovac F, Tang J, Xu S, et al. (2005) Precision targeting of liver lesions using a novel electromagnetic navigation device in physiologic phantom and swine. Med Phys 32(8):2698–2705

    Article  PubMed  Google Scholar 

  7. Maier-Hein L, Tekbas A, Seitel A, et al. (2008) In vivo accuracy assessment of a needle-based navigation system for CT-guided radiofrequency ablation of the liver. Med Phys 35(12):5385–5396

    Article  PubMed  Google Scholar 

  8. Wood BJ, Zhang H, Durrani A, et al. (2005) Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol 16(4):493–505

    Article  PubMed  PubMed Central  Google Scholar 

  9. Banovac F, Wilson E, Zhang H, Cleary K (2006) Needle biopsy of anatomically unfavorable liver lesions with an electromagnetic navigation assist device in a computed tomography environment. J Vasc Interv Radiol 17(10):1671–1675

    Article  PubMed  Google Scholar 

  10. Yaniv Z, Cheng P, Wilson E, et al. (2010) Needle-based interventions with the image-guided surgery toolkit (IGSTK): from phantoms to clinical trials. IEEE Trans Biomed Eng 57(4):922–933

    Article  PubMed  Google Scholar 

  11. Krücker J, Xu S, Venkatesan A, et al. (2011) Clinical utility of real-time fusion guidance for biopsy and ablation. J Vasc Interv Radiol 22(4):515–524

    Article  PubMed  PubMed Central  Google Scholar 

  12. Appelbaum L, Solbiati L, Sosna J, et al. (2013) Evaluation of an electromagnetic image-fusion navigation system for biopsy of small lesions: assessment of accuracy in an in vivo swine model. Acad Radiol 20(2):209–217

    Article  PubMed  Google Scholar 

  13. Wacker FK, Vogt S, Khamene A, et al. (2006) An augmented reality system for MR image–guided needle biopsy: initial results in a swine model. Radiology 238(2):497–504

    Article  PubMed  Google Scholar 

  14. Nicolau S, Pennec X, Soler L, et al. (2009) An augmented reality system for liver thermal ablation: design and evaluation on clinical cases. Med Image Anal 13(3):494–506

    Article  CAS  PubMed  Google Scholar 

  15. Oliveira-Santos T, Peterhans M, Hofmann S, Weber S (2011) Passive single marker tracking for organ motion and deformation detection in open liver surgery. In: Information processing in computer-assisted interventions. Springer, Berlin, pp 156–167

  16. von Jako CR, Zuk Y, Zur O, Gilboa P (2013) A novel accurate minioptical tracking system for percutaneous needle placement. IEEE Trans Biomed Eng 60(8):2222–2225

    Article  Google Scholar 

  17. Lin Q, Yang R, Cai K, et al. (2015) Strategy for accurate liver intervention by an optical tracking system. Biomed Opt Express 6(9):3287–3302

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bale R, Schullian P, Schmuth M, et al. (2016) Stereotactic radiofrequency ablation for metastatic melanoma to the liver. Cardiovasc Interv. Radiol 39(8):1128–1135

    Article  Google Scholar 

  19. Mauri G, Cova L, De Beni S, et al. (2015) Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Interv Radiol 38(1):143–151

    Article  Google Scholar 

  20. Mauri G, De Beni S, Forzoni L, D’Onofrio S, Kolev V, Laganà M, Solbiati L (2014) Virtual navigator automatic registration technology in abdominal application. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, 2014. IEEE, pp 5570–5574

  21. Mauri G (2015) Expanding role of virtual navigation and fusion imaging in percutaneous biopsies and ablation. Abdom Imaging 40(8):3238–3239

    Article  PubMed  Google Scholar 

  22. Xiao D, Luo H, Jia F, et al. (2016) A Kinect camera based navigation system for percutaneous abdominal puncture. Phys Med Biol 61(15):5687–5705

  23. Appelbaum L, Sosna J, Nissenbaum Y, Benshtein A, Goldberg SN (2011) Electromagnetic navigation system for CT-guided biopsy of small lesions. Am J Roentgenol 196(5):1194–1200

    Article  Google Scholar 

  24. Birkfellner W, Watzinger F, Wanschitz F, Ewers R, Bergmann H (1998) Calibration of tracking systems in a surgical environment. IEEE Trans Med Imaging 17(5):737–742

    Article  CAS  PubMed  Google Scholar 

  25. Wallach D, Toporek G, Weber S, Bale R, Widmann G (2014) Comparison of freehand-navigated and aiming device-navigated targeting of liver lesions. Int J Med Robot 10(1):35–43

    Article  CAS  PubMed  Google Scholar 

  26. Hintze J (2011) PASS 11. NCSS, LLC. Kaysville. Utah, USA. www.ncss.com.

  27. Seitel A, Bellemann N, Hafezi M, et al. (2016) Towards markerless navigation for percutaneous needle insertions. Int J Comput Assist Radiol Surg 11(1):107–117

    Article  PubMed  Google Scholar 

  28. Toporek G, Engstrand J, Nilsson H, et al. (2015) Intra-interventional image fusion and needle placement verification for percutaneous CT-guided interventions. Int J Comput Assist Radiol Surg 10(Suppl 1):S37–S38

    Google Scholar 

  29. Xia J, Siochi RA (2012) A real-time respiratory motion monitoring system using KINECT: proof of concept. Med Phys 39(5):2682–2685

    Article  PubMed  Google Scholar 

  30. Tahavori F, Alnowami M, Wells K Marker-less respiratory motion modeling using the Microsoft Kinect for Windows. In: SPIE Medical imaging, 2014. International Society for Optics and Photonics, pp 90360 K–90310 K

  31. Yue J, Sun X, Cai J, et al. (2012) Lipiodol: a potential direct surrogate for cone-beam computed tomography image guidance in radiotherapy of liver tumor. Int J Radiat Oncol Biol Phys 82(2):834–841

    Article  CAS  PubMed  Google Scholar 

  32. Tsuchida M, Yamato Y, Aoki T, et al. (1999) CT-guided agar marking for localization of nonpalpable peripheral pulmonary lesions. Chest 116(1):139–143

    Article  CAS  PubMed  Google Scholar 

  33. Sainani NI, Arellano RS, Shyn PB, et al. (2013) The challenging image-guided abdominal mass biopsy: established and emerging techniques ‘if you can see it, you can biopsy it’. Abdom Imaging 38(4):672–696

    Article  PubMed  Google Scholar 

  34. Mauri G, Porazzi E, Cova L, et al. (2014) Intraprocedural contrast-enhanced ultrasound (CEUS) in liver percutaneous radiofrequency ablation: clinical impact and health technology assessment. Insights Imaging 5(2):209–216

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mauri G, Cova L, Ierace T, et al. (2016) Treatment of metastatic lymph nodes in the neck from papillary thyroid carcinoma with percutaneous laser ablation. Cardiovasc Interv Radiol 39(7):1023–1030

    Article  Google Scholar 

  36. Shyn P, Tatli S, Sahni V, et al. (2014) PET/CT-guided percutaneous liver mass biopsies and ablations: targeting accuracy of a single 20 s breath-hold PET acquisition. Clin Radiol 69(4):410–415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Gregory C Sharp for language improvement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanfang Zhang or Fucang Jia.

Ethics declarations

Funding

This study was supported by the following grants: National Key Research and Development Program (No. 2016YFC0106502), NSFC-GD Union Foundation (No. U1401254), NSFC-Shenzhen Union Foundation (No. U1613221), Guangdong Provincial Key Science and Technology Program (No. 2015B020214005), Guangdong Science and Technology Program (No. 2013B010404028), Shenzhen Key Science and Technology Development Program (No. JCYJ20140509174140681, JCCJY20140415162543027, JCYJ20150630114942306, and CXZZ20150430161339354).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed consent

Statement of informed consent was not applicable since the manuscript does not contain any patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, D., Li, Y., Luo, H. et al. In vivo comparison of two navigation systems for abdominal percutaneous needle intervention. Abdom Radiol 42, 1993–2000 (2017). https://doi.org/10.1007/s00261-017-1083-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-017-1083-x

Keywords

Navigation