Skip to main content
Log in

Functional MR imaging in gynecologic malignancies: current status and future perspectives

  • Pictorial Essay
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Using functional MR imaging techniques, we can approach the functional assessment of gynecologic malignancies. Among them, diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MR imaging (DCE-MRI) are two important techniques. This article provides an overview of functional MR imaging techniques, focusing DWI and DCE-MRI on clinical application in gynecologic malignancies. Functional MR imaging techniques play an important role in detection, characterization, staging, treatment response, and outcome prediction, as well as providing conventional morphologic imaging. Familiarity with the characteristics and imaging features of functional MR imaging in gynecologic malignancies will facilitate prompt and accurate diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wakefield JC, Downey K, Kyriazi S, deSouza NM (2013) New MR techniques in gynecologic cancer. AJR Am J Roentgenol 200(2):249–260. doi:10.2214/AJR.12.8932

    Article  PubMed  Google Scholar 

  2. Sala E, Rockall AG, Freeman SJ, Mitchell DG, Reinhold C (2013) The added role of MR imaging in treatment stratification of patients with gynecologic malignancies: what the radiologist needs to know. Radiology 266(3):717–740. doi:10.1148/radiol.12120315

    Article  PubMed  Google Scholar 

  3. Sala E (2008) Magnetic resonance imaging of the female pelvis. Semin Roentgenol 43(4):290–302. doi:10.1053/j.ro.2008.06.003

    Article  PubMed  Google Scholar 

  4. Nougaret S, Tirumani SH, Addley H, et al. (2013) Pearls and pitfalls in MRI of gynecologic malignancy with diffusion-weighted technique. AJR Am J Roentgenol 200(2):261–276. doi:10.2214/AJR.12.9713

    Article  PubMed  Google Scholar 

  5. Balleyguier C, Sala E, Da Cunha T, et al. (2011) Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology. Eur Radiol 21(5):1102–1110. doi:10.1007/s00330-010-1998-x

    Article  PubMed  Google Scholar 

  6. Namimoto T, Awai K, Nakaura T, et al. (2009) Role of diffusion-weighted imaging in the diagnosis of gynecological diseases. Eur Radiol 19(3):745–760. doi:10.1007/s00330-008-1185-5

    Article  PubMed  Google Scholar 

  7. Sala E, Rockall A, Rangarajan D, Kubik-Huch RA (2010) The role of dynamic contrast-enhanced and diffusion weighted magnetic resonance imaging in the female pelvis. Eur J Radiol 76(3):367–385. doi:10.1016/j.ejrad.2010.01.026

    Article  PubMed  Google Scholar 

  8. Motoshima S, Irie H, Nakazono T, Kamura T, Kudo S (2011) Diffusion-weighted MR imaging in gynecologic cancers. J Gynecol Oncol 22(4):275–287. doi:10.3802/jgo.2011.22.4.275

    Article  PubMed  PubMed Central  Google Scholar 

  9. Whittaker CS, Coady A, Culver L, et al. (2009) Diffusion-weighted MR imaging of female pelvic tumors: a pictorial review. Radiogr: Rev Publ Radiol Soc N Am, Inc 29(3):759–774 (discussion 774-758). doi:10.1148/rg.293085130

    Article  Google Scholar 

  10. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188(6):1622–1635. doi:10.2214/AJR.06.1403

    Article  PubMed  Google Scholar 

  11. Koyama T, Togashi K (2007) Functional MR imaging of the female pelvis. J Magn Reson Imaging: JMRI 25(6):1101–1112. doi:10.1002/jmri.20913

    Article  PubMed  Google Scholar 

  12. Levy A, Medjhoul A, Caramella C, et al. (2011) Interest of diffusion-weighted echo-planar MR imaging and apparent diffusion coefficient mapping in gynecological malignancies: a review. J Magn Reson Imaging : JMRI 33(5):1020–1027. doi:10.1002/jmri.22546

    Article  PubMed  Google Scholar 

  13. Koh DM, Collins DJ, Orton MR (2011) Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 196(6):1351–1361. doi:10.2214/AJR.10.5515

    Article  PubMed  Google Scholar 

  14. Le Bihan D, Breton E, Lallemand D, et al. (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407. doi:10.1148/radiology.161.2.3763909

    Article  PubMed  Google Scholar 

  15. Lee EY, Hui ES, Chan KK, et al. (2015) Relationship between intravoxel incoherent motion diffusion-weighted MRI and dynamic contrast-enhanced MRI in tissue perfusion of cervical cancers. J Magn Reson Imaging: JMRI 42(2):454–459. doi:10.1002/jmri.24808

    Article  PubMed  Google Scholar 

  16. Lee EY, Yu X, Chu MM, et al. (2014) Perfusion and diffusion characteristics of cervical cancer based on intraxovel incoherent motion MR imaging-a pilot study. Eur Radiol 24(7):1506–1513. doi:10.1007/s00330-014-3160-7

    Article  PubMed  Google Scholar 

  17. Thoeny HC, Forstner R, De Keyzer F (2012) Genitourinary applications of diffusion-weighted MR imaging in the pelvis. Radiology 263(2):326–342. doi:10.1148/radiol.12110446

    Article  PubMed  Google Scholar 

  18. Malayeri AA, El Khouli RH, Zaheer A, et al. (2011) Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics: Rev Publ Radiol Soc N Am Inc 31(6):1773–1791. doi:10.1148/rg.316115515

    Article  Google Scholar 

  19. Koh DM, Blackledge M, Padhani AR, et al. (2012) Whole-body diffusion-weighted MRI: tips, tricks, and pitfalls. AJR Am J Roentgenol 199(2):252–262. doi:10.2214/AJR.11.7866

    Article  PubMed  Google Scholar 

  20. Punwani S (2011) Diffusion weighted imaging of female pelvic cancers: concepts and clinical applications. Eur J Radiol 78(1):21–29. doi:10.1016/j.ejrad.2010.07.028

    Article  PubMed  Google Scholar 

  21. Gonzalez Hernando C, Esteban L, Canas T, Van den Brule E, Pastrana M (2010) The role of magnetic resonance imaging in oncology. Clin Transl Oncol: Off Publ Fed Span Oncol Soc Natl Cancer Inst Mex 12(9):606–613

    Article  Google Scholar 

  22. Zahra MA, Hollingsworth KG, Sala E, Lomas DJ, Tan LT (2007) Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol 8(1):63–74. doi:10.1016/S1470-2045(06)71012-9

    Article  PubMed  Google Scholar 

  23. Verma S, Turkbey B, Muradyan N, et al. (2012) Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. AJR Am J Roentgenol 198(6):1277–1288. doi:10.2214/AJR.12.8510

    Article  PubMed  Google Scholar 

  24. Hameeduddin A, Sahdev A (2015) Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies. Cancer Imaging : Off Publ Int Cancer Imaging Soc 15:3. doi:10.1186/s40644-015-0037-1

    Article  Google Scholar 

  25. Zahra MA, Tan LT, Priest AN, et al. (2009) Semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging measurements predict radiation response in cervix cancer. Int J Radiat Oncol Biol Phys 74(3):766–773. doi:10.1016/j.ijrobp.2008.08.023

    Article  PubMed  Google Scholar 

  26. Tofts PS, Brix G, Buckley DL, et al. (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging: JMRI 10(3):223–232

    Article  CAS  PubMed  Google Scholar 

  27. Park JJ, Kim CK, Park SY, Park BK (2015) Parametrial invasion in cervical cancer: fused T2-weighted imaging and high-b-value diffusion-weighted imaging with background body signal suppression at 3 T. Radiology 274(3):734–741. doi:10.1148/radiol.14140920

    Article  PubMed  Google Scholar 

  28. Naganawa S, Sato C, Kumada H, et al. (2005) Apparent diffusion coefficient in cervical cancer of the uterus: comparison with the normal uterine cervix. Eur Radiol 15(1):71–78. doi:10.1007/s00330-004-2529-4

    Article  PubMed  Google Scholar 

  29. Chen J, Zhang Y, Liang B, Yang Z (2010) The utility of diffusion-weighted MR imaging in cervical cancer. Eur J Radiol 74(3):e101–106. doi:10.1016/j.ejrad.2009.04.025

    Article  PubMed  Google Scholar 

  30. McVeigh PZ, Syed AM, Milosevic M, Fyles A, Haider MA (2008) Diffusion-weighted MRI in cervical cancer. Eur Radiol 18(5):1058–1064. doi:10.1007/s00330-007-0843-3

    Article  PubMed  Google Scholar 

  31. Addley HC, Vargas HA, Moyle PL, Crawford R, Sala E (2010) Pelvic imaging following chemotherapy and radiation therapy for gynecologic malignancies. Radiographics: Rev Publ Radiol Soc N Am Inc 30(7):1843–1856. doi:10.1148/rg.307105063

    Article  Google Scholar 

  32. Van Vierzen PB, Massuger LF, Ruys SH, Barentsz JO (1998) Fast dynamic contrast enhanced MR imaging of cervical carcinoma. Clin Radiol 53(3):183–192

    Article  PubMed  Google Scholar 

  33. Sahdev A, Sohaib SA, Wenaden AE, Shepherd JH, Reznek RH (2007) The performance of magnetic resonance imaging in early cervical carcinoma: a long-term experience. Int J Gynecol Cancer: Off J Int Gynecol Cancer Soc 17(3):629–636. doi:10.1111/j.1525-1438.2007.00829.x

    Article  CAS  Google Scholar 

  34. Charles-Edwards EM, Messiou C, Morgan VA, et al. (2008) Diffusion-weighted imaging in cervical cancer with an endovaginal technique: potential value for improving tumor detection in stage Ia and Ib1 disease. Radiology 249(2):541–550. doi:10.1148/radiol.2491072165

    Article  PubMed  Google Scholar 

  35. Sala E, Wakely S, Senior E, Lomas D (2007) MRI of malignant neoplasms of the uterine corpus and cervix. AJR Am J Roentgenol 188(6):1577–1587. doi:10.2214/AJR.06.1196

    Article  PubMed  Google Scholar 

  36. Scheidler J, Heuck AF (2002) Imaging of cancer of the cervix. Radiologic clinics of North America 40(3):577–590 (vii)

    Article  PubMed  Google Scholar 

  37. Subak LL, Hricak H, Powell CB, Azizi L, Stern JL (1995) Cervical carcinoma: computed tomography and magnetic resonance imaging for preoperative staging. Obstet Gynecol 86(1):43–50

    Article  CAS  PubMed  Google Scholar 

  38. Sheu MH, Chang CY, Wang JH, Yen MS (2001) Preoperative staging of cervical carcinoma with MR imaging: a reappraisal of diagnostic accuracy and pitfalls. Eur Radiol 11(9):1828–1833. doi:10.1007/s003300000774

    Article  CAS  PubMed  Google Scholar 

  39. Kaur H, Silverman PM, Iyer RB, et al. (2003) Diagnosis, staging, and surveillance of cervical carcinoma. AJR Am J Roentgenol 180(6):1621–1631. doi:10.2214/ajr.180.6.1801621

    Article  PubMed  Google Scholar 

  40. Kim HS, Kim CK, Park BK, Huh SJ, Kim B (2013) Evaluation of therapeutic response to concurrent chemoradiotherapy in patients with cervical cancer using diffusion-weighted MR imaging. J Magn Reson Imaging: JMRI 37(1):187–193. doi:10.1002/jmri.23804

    Article  PubMed  Google Scholar 

  41. Thoeny HC, Ross BD (2010) Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson imaging: JMRI 32(1):2–16. doi:10.1002/jmri.22167

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hamstra DA, Rehemtulla A, Ross BD (2007) Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol: Off J Am Soc Clin Oncol 25(26):4104–4109. doi:10.1200/JCO.2007.11.9610

    Article  Google Scholar 

  43. Heo SH, Shin SS, Kim JW, et al. (2013) Pre-treatment diffusion-weighted MR imaging for predicting tumor recurrence in uterine cervical cancer treated with concurrent chemoradiation: value of histogram analysis of apparent diffusion coefficients. Korean J Radiol: Off J Korean Radiol Soc 14(4):616–625. doi:10.3348/kjr.2013.14.4.616

    Article  Google Scholar 

  44. Yamashita Y, Baba T, Baba Y, et al. (2000) Dynamic contrast-enhanced MR imaging of uterine cervical cancer: pharmacokinetic analysis with histopathologic correlation and its importance in predicting the outcome of radiation therapy. Radiology 216(3):803–809. doi:10.1148/radiology.216.3.r00se07803

    Article  CAS  PubMed  Google Scholar 

  45. Park JJ, Kim CK, Park BK (2016) Prognostic value of diffusion-weighted magnetic resonance imaging and F-fluorodeoxyglucose-positron emission tomography/computed tomography after concurrent chemoradiotherapy in uterine cervical cancer. Radiother Oncol: J Eur Soc Ther Radiol Oncol . doi:10.1016/j.radonc.2016.02.014

    Google Scholar 

  46. Park JJ, Kim CK, Park BK (2015) Prediction of disease progression following concurrent chemoradiotherapy for uterine cervical cancer: value of post-treatment diffusion-weighted imaging. Eur Radiol . doi:10.1007/s00330-015-4156-7

    PubMed Central  Google Scholar 

  47. Park JJ, Kim CK, Park SY, et al. (2014) Assessment of early response to concurrent chemoradiotherapy in cervical cancer: value of diffusion-weighted and dynamic contrast-enhanced MR imaging. Magn Reson Imaging 32(8):993–1000. doi:10.1016/j.mri.2014.05.009

    Article  PubMed  Google Scholar 

  48. Lund KV, Simonsen TG, Hompland T, Kristensen GB, Rofstad EK (2015) Short-term pretreatment DCE-MRI in prediction of outcome in locally advanced cervical cancer. Radiother Oncol: J Eur Soc Ther Radiol Oncol 115(3):379–385. doi:10.1016/j.radonc.2015.05.001

    Article  Google Scholar 

  49. Kitchener H, Swart AM, Qian Q, et al. (2009) Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised study. Lancet 373(9658):125–136. doi:10.1016/S0140-6736(08)61766-3

    Article  CAS  PubMed  Google Scholar 

  50. Rechichi G, Galimberti S, Signorelli M, et al. (2011) Endometrial cancer: correlation of apparent diffusion coefficient with tumor grade, depth of myometrial invasion, and presence of lymph node metastases. AJR Am J Roentgenol 197(1):256–262. doi:10.2214/AJR.10.5584

    Article  PubMed  Google Scholar 

  51. Tamai K, Koyama T, Saga T, et al. (2007) Diffusion-weighted MR imaging of uterine endometrial cancer. J Magn Reson Imaging: JMRI 26(3):682–687. doi:10.1002/jmri.20997

    Article  PubMed  Google Scholar 

  52. Fujii S, Matsusue E, Kigawa J, et al. (2008) Diagnostic accuracy of the apparent diffusion coefficient in differentiating benign from malignant uterine endometrial cavity lesions: initial results. Eur Radiol 18(2):384–389. doi:10.1007/s00330-007-0769-9

    Article  PubMed  Google Scholar 

  53. Larson DM, Connor GP, Broste SK, Krawisz BR, Johnson KK (1996) Prognostic significance of gross myometrial invasion with endometrial cancer. Obstet Gynecol 88(3):394–398. doi:10.1016/0029-7844(96)00161-5

    Article  CAS  PubMed  Google Scholar 

  54. Sala E, Crawford R, Senior E, et al. (2009) Added value of dynamic contrast-enhanced magnetic resonance imaging in predicting advanced stage disease in patients with endometrial carcinoma. Int J Gynecol Cancer: Off J Int Gynecol Cancer Soc 19(1):141–146. doi:10.1111/IGC.0b013e3181995fd9

    Article  Google Scholar 

  55. Yamashita Y, Harada M, Sawada T, et al. (1993) Normal uterus and FIGO stage I endometrial carcinoma: dynamic gadolinium-enhanced MR imaging. Radiology 186(2):495–501. doi:10.1148/radiology.186.2.8421757

    Article  CAS  PubMed  Google Scholar 

  56. Lin G, Ng KK, Chang CJ, et al. (2009) Myometrial invasion in endometrial cancer: diagnostic accuracy of diffusion-weighted 3.0-T MR imaging–initial experience. Radiology 250(3):784–792. doi:10.1148/radiol.2503080874

    Article  PubMed  Google Scholar 

  57. Andreano A, Rechichi G, Rebora P, et al. (2014) MR diffusion imaging for preoperative staging of myometrial invasion in patients with endometrial cancer: a systematic review and meta-analysis. Eur Radiol 24(6):1327–1338. doi:10.1007/s00330-014-3139-4

    Article  PubMed  Google Scholar 

  58. Bonatti M, Stuefer J, Oberhofer N, et al. (2015) MRI for local staging of endometrial carcinoma: is endovenous contrast medium administration still needed? Eur J Radiol 84(2):208–214. doi:10.1016/j.ejrad.2014.11.010

    Article  PubMed  Google Scholar 

  59. Lin YC, Lin G, Chen YR, et al. (2011) Role of magnetic resonance imaging and apparent diffusion coefficient at 3T in distinguishing between adenocarcinoma of the uterine cervix and endometrium. Chang Gung Med J 34(1):93–100

    PubMed  Google Scholar 

  60. Sahdev A, Sohaib SA, Jacobs I, et al. (2001) MR imaging of uterine sarcomas. AJR Am J Roentgenol 177(6):1307–1311. doi:10.2214/ajr.177.6.1771307

    Article  CAS  PubMed  Google Scholar 

  61. Tamai K, Koyama T, Saga T, et al. (2008) The utility of diffusion-weighted MR imaging for differentiating uterine sarcomas from benign leiomyomas. Eur Radiol 18(4):723–730. doi:10.1007/s00330-007-0787-7

    Article  PubMed  Google Scholar 

  62. Lin G, Yang LY, Huang YT, et al. (2016) Comparison of the diagnostic accuracy of contrast-enhanced MRI and diffusion-weighted MRI in the differentiation between uterine leiomyosarcoma/smooth muscle tumor with uncertain malignant potential and benign leiomyoma. J Magn Reson Imaging: JMRI 43(2):333–342. doi:10.1002/jmri.24998

    Article  PubMed  Google Scholar 

  63. Sato K, Yuasa N, Fujita M, Fukushima Y (2014) Clinical application of diffusion-weighted imaging for preoperative differentiation between uterine leiomyoma and leiomyosarcoma. American journal of obstetrics and gynecology 210(4):e361–e368. doi:10.1016/j.ajog.2013.12.028

    Article  Google Scholar 

  64. Namimoto T, Yamashita Y, Awai K, et al. (2009) Combined use of T2-weighted and diffusion-weighted 3-T MR imaging for differentiating uterine sarcomas from benign leiomyomas. Eur Radiol 19(11):2756–2764. doi:10.1007/s00330-009-1471-x

    Article  PubMed  Google Scholar 

  65. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA: Cancer J Clin 60(5):277–300. doi:10.3322/caac.20073

    Google Scholar 

  66. Munstedt K, Franke FE (2004) Role of primary surgery in advanced ovarian cancer. World J Surg Oncol 2:32. doi:10.1186/1477-7819-2-32

    Article  PubMed  PubMed Central  Google Scholar 

  67. Vergote I, Trope CG, Amant F, et al. (2010) Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N Engl J Med 363(10):943–953. doi:10.1056/NEJMoa0908806

    Article  CAS  PubMed  Google Scholar 

  68. Sohaib SA, Sahdev A, Van Trappen P, Jacobs IJ, Reznek RH (2003) Characterization of adnexal mass lesions on MR imaging. AJR Am J Roentgenol 180(5):1297–1304. doi:10.2214/ajr.180.5.1801297

    Article  PubMed  Google Scholar 

  69. Thomassin-Naggara I, Aubert E, Rockall A, et al. (2013) Adnexal masses: development and preliminary validation of an MR imaging scoring system. Radiology 267(2):432–443. doi:10.1148/radiol.13121161

    Article  PubMed  Google Scholar 

  70. Bernardin L, Dilks P, Liyanage S, et al. (2012) Effectiveness of semi-quantitative multiphase dynamic contrast-enhanced MRI as a predictor of malignancy in complex adnexal masses: radiological and pathological correlation. Eur Radiol 22(4):880–890. doi:10.1007/s00330-011-2331-z

    Article  PubMed  Google Scholar 

  71. Mohaghegh P, Rockall AG (2012) Imaging strategy for early ovarian cancer: characterization of adnexal masses with conventional and advanced imaging techniques. Radiographics: Rev Publ Radiol Soc N Am Inc 32(6):1751–1773. doi:10.1148/rg.326125520

    Article  Google Scholar 

  72. Thomassin-Naggara I, Balvay D, Aubert E, et al. (2012) Quantitative dynamic contrast-enhanced MR imaging analysis of complex adnexal masses: a preliminary study. Eur Radiol 22(4):738–745. doi:10.1007/s00330-011-2329-6

    Article  PubMed  Google Scholar 

  73. Thomassin-Naggara I, Toussaint I, Perrot N, et al. (2011) Characterization of complex adnexal masses: value of adding perfusion- and diffusion-weighted MR imaging to conventional MR imaging. Radiology 258(3):793–803. doi:10.1148/radiol.10100751

    Article  PubMed  Google Scholar 

  74. Coakley FV, Choi PH, Gougoutas CA, et al. (2002) Peritoneal metastases: detection with spiral CT in patients with ovarian cancer. Radiology 223(2):495–499. doi:10.1148/radiol.2232011081

    Article  PubMed  Google Scholar 

  75. Ricke J, Sehouli J, Hach C, et al. (2003) Prospective evaluation of contrast-enhanced MRI in the depiction of peritoneal spread in primary or recurrent ovarian cancer. Eur Radiol 13(5):943–949. doi:10.1007/s00330-002-1712-8

    PubMed  Google Scholar 

  76. Low RN, Sebrechts CP, Barone RM, Muller W (2009) Diffusion-weighted MRI of peritoneal tumors: comparison with conventional MRI and surgical and histopathologic findings—a feasibility study. AJR Am J Roentgenol 193(2):461–470. doi:10.2214/AJR.08.1753

    Article  PubMed  Google Scholar 

  77. Fujii S, Matsusue E, Kanasaki Y, et al. (2008) Detection of peritoneal dissemination in gynecological malignancy: evaluation by diffusion-weighted MR imaging. Eur Radiol 18(1):18–23. doi:10.1007/s00330-007-0732-9

    Article  PubMed  Google Scholar 

  78. Sala E, Kataoka MY, Priest AN, et al. (2012) Advanced ovarian cancer: multiparametric MR imaging demonstrates response- and metastasis-specific effects. Radiology 263(1):149–159. doi:10.1148/radiol.11110175

    Article  PubMed  Google Scholar 

  79. Xue HD, Li S, Sun F, et al. (2008) Clinical application of body diffusion weighted MR imaging in the diagnosis and preoperative N staging of cervical cancer. Chin Med Sci J = Chung-kuo i hsueh k’o hsueh tsa chih/Chin Acad Med Sci 23(3):133–137

    Google Scholar 

Download references

Acknowledgments

I would like to express my gratitude to Dr. Aki Kido, Kyoto University Hospital, Kyoto, Japan, and to Dr. Chan Kyo Kim, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea for sharing their case images (Figs. 3, 5, 6, 12, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Bin Park.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.B. Functional MR imaging in gynecologic malignancies: current status and future perspectives. Abdom Radiol 41, 2509–2523 (2016). https://doi.org/10.1007/s00261-016-0924-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-016-0924-3

Keywords

Navigation