Skip to main content
Log in

Multimodality fusion imaging in abdominal and pelvic malignancies: current applications and future perspectives

  • Pictorial Essay
  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Medicine is evolving toward personalized care and this development entails the integration, amalgamation, and synchronized analysis of data from multiple sources. Multimodality fusion imaging refers to the simultaneous visualization of spatially aligned and juxtaposed medical images obtained by two or more image modalities. PET/MRI scanners and MMFI platforms are able to improve the diagnostic workflow in oncologic patients and provide exquisite images that aid physicians in the molecular profiling and characterization of tissues. Advanced navigation platforms involving real-time ultrasound are promising tools for guiding personalized and tailored mini-invasive interventional procedures on technically challenging targets. The main objective of the present essay was to describe the current applications and future perspectives of multimodality fusion imaging for both diagnostic and interventional purposes in the field of abdominal and pelvic malignancies. We also outlined the technical differences between fusion imaging achieved by means of simultaneous bimodal acquisition (i.e., integrated PET/MRI scanners), retrospective co-registration, and multimodality fusion imaging involving ultrafast or real-time imaging modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Beyer T, Freudenberg LS, Townsend DW, Czernin J (2011) The future of hybrid imaging-part 1: hybrid imaging technologies and SPECT/CT. Insights Imaging 2:161–169

    Article  PubMed Central  PubMed  Google Scholar 

  2. Indrajit I, Verma B (2009) Monitor displays in radiology: Part 1. Indian J Radiol Imaging 19:24–28

    Article  PubMed Central  PubMed  Google Scholar 

  3. Ewertsen C, Săftoiu A, Gruionu LG, Karstrup S, Nielsen MB (2013) Real-time image fusion involving diagnostic ultrasound. AJR Am J Roentgenol 200:249–255

    Article  Google Scholar 

  4. Piccardo A, Paparo F, Picazzo R, et al. (2014) Value of fused 18F-Choline-PET/MRI to evaluate prostate cancer relapse in patients showing biochemical recurrence after EBRT: preliminary results. Biomed Res Int 2014:103718

    Article  PubMed Central  PubMed  Google Scholar 

  5. Abi-Jaoudeh N, Kruecker J, Kadoury S, et al. (2012) Multimodality image fusion-guided procedures: technique, accuracy, and applications. Cardiovasc Intervent Radiol 35:986–998

    Article  PubMed Central  PubMed  Google Scholar 

  6. Slomka PJ, Baum RP (2009) Multimodality image registration with software: state-of-the-art. Eur J Nucl Med Mol Imaging 36(1):44–55

    Article  Google Scholar 

  7. Appelbaum L, Mahgerefteh SY, Sosna J, Goldberg SN (2013) Image-guided fusion and navigation: applications in tumor ablation. Tech Vasc Interv Radiol 16:287–295

    Article  PubMed  Google Scholar 

  8. Mauri G, Cova L, De Beni S, et al. (2015) Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Intervent Radiol 38:143–151

    Article  PubMed  Google Scholar 

  9. Paparo F, Piccazzo R, Cevasco L, et al. (2014) Advantages of percutaneous abdominal biopsy under PET-CT/ultrasound fusion imaging guidance: a pictorial essay. Abdom Imaging 39:1102–1113

    Article  PubMed  Google Scholar 

  10. James PA, Dasarathy BV (2014) Medical image fusion: a survey of the state of the art. Inf Fusion 19:4–19

    Article  Google Scholar 

  11. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC (1998) Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogrv 22:139–152

    Article  CAS  Google Scholar 

  12. Giesel FL, Mehndiratta A, Locklin J, et al. (2009) Image fusion using CT, MRI and PET for treatment planning, navigation and follow up in percutaneous RFA. Exp Oncol 31:106–114

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Zitova Barbara, Flusser Jan (2003) Image registration methods: a survey. Image Vis Comput 21:977–1000

    Article  Google Scholar 

  14. Wood BJ, Kruecker J, Abi-Jaoudeh N, et al. (2010) Navigation systems for ablation. J Vasc Interv Radiol 21(8):257–263

    Article  Google Scholar 

  15. Maccioni F, Patak MA, Signore A, Laghi A (2012) New frontiers of MRI in Crohn’s disease: motility imaging, diffusion-weighted imaging, perfusion MRI, MR spectroscopy, molecular imaging, and hybrid imaging (PET/MRI). Abdom Imaging 37:974–982

    Article  PubMed  Google Scholar 

  16. Appelbaum L, Solbiati L, Sosna J, et al. (2013) Evaluation of an electromagnetic image-fusion navigation system for biopsy of small lesions: assessment of accuracy in an in vivo swine model. Acad Radiol 20:209–217

    Article  PubMed  Google Scholar 

  17. Beyer T, Townsend DW, Czernin J, Freudenberg LS (2011) The future of hybrid imaging-part 2: PET/CT. Insights Imaging 2:225–234

    Article  PubMed Central  PubMed  Google Scholar 

  18. Beyer T, Freudenberg LS, Czernin J, Townsend DW (2011) The future of hybrid imaging-part 3: PET/MR, small-animal imaging and beyond. Insights Imaging 2:235–246

    Article  PubMed Central  PubMed  Google Scholar 

  19. von Schulthess GK, Kuhn FP, Kaufmann P, Veit-Haibach P (2013) Clinical positron emission tomography/magnetic resonance imaging applications. Semin Nucl Med 43:3–10

    Article  Google Scholar 

  20. Hofmann M, Steinke F, Scheel V, et al. (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49:1875–1883

    Article  PubMed  Google Scholar 

  21. Jadvar H, Colletti PM (2014) Competitive advantage of PET/MRI. Eur J Radiol 83:84–94

    Article  PubMed Central  PubMed  Google Scholar 

  22. Teixera SR, Kohan AA, Paspulati RM, Rong R, Herrmann KA (2014) Potential role of positron emission tomography/magnetic resonance imaging in gastrointestinal and abdominal malignancies: preliminary experience. Semin Roentgenol 49:321–333

    Article  PubMed  Google Scholar 

  23. Nensa F, Beiderwellen K, Heusch P, Wetter A (2014) Clinical applications of PET/MRI: current status and future perspectives. Diagn Interv Radiol 20:438–447

    Article  PubMed Central  PubMed  Google Scholar 

  24. Crocetti L, Lencioni R, Debeni S, et al. (2008) Targeting liver lesions for radiofrequency ablation: an experimental feasibility study using a CT-US fusion imaging system. Invest Radiol 43:33–39

    Article  PubMed  Google Scholar 

  25. Di Mauro E, Solbiati M, De Beni S, et al. (2013) Virtual navigator real-time ultrasound fusion imaging with positron emission tomography for liver interventions. Conf Proc IEEE Eng Med Biol Soc 2013:1406–1409

    PubMed  Google Scholar 

  26. Wood BJ, Zhang H, Durrani A, et al. (2005) Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol 6:493–505

    Article  Google Scholar 

  27. Racadio JM, Babic D, Homan R, et al. (2007) Live 3D guidance in the interventional radiology suite. AJR Am J Roentgenol 189:357–364

    Article  Google Scholar 

  28. Tam A, Mohamed A, Pfister M, Rohm E, Wallace MJ (2009) C-arm cone beam computed tomographic needle path overlay for fluoroscopic-guided placement of translumbar central venous catheters. Cardiovasc Intervent Radiol 32:820–824

    Article  PubMed  Google Scholar 

  29. Kim SK, Choi HJ, Park SY, et al. (2009) Additional value of MR/PET fusion compared with PET/CT in the detection of lymph node metastases in cervical cancer patients. Eur J Cancer 45:2103–2109

    Article  PubMed  Google Scholar 

  30. Kitajima K, Suenaga Y, Ueno Y, et al. (2014) Fusion of PET and MRI for staging of uterine cervical cancer: comparison with contrast-enhanced (18)F-FDG PET/CT and pelvic MRI. Clin Imaging 38:464–469

    Article  PubMed  Google Scholar 

  31. Beer AJ, Eiber M, Souvatzoglou M, et al. (2011) Restricted water diffusibility as measured by diffusion-weighted MR imaging and choline uptake in (11)C-choline PET/CT are correlated in pelvic lymph nodes in patients with prostate cancer. Mol Imaging Biol 13:352–361

    Article  PubMed  Google Scholar 

  32. Schreiter NF, Nogami M, Steffen I, et al. (2012) Evaluation of the potential of PET-MRI fusion for detection of liver metastases in patients with neuroendocrine tumours. Eur Radiol 22:458–467

    Article  PubMed  Google Scholar 

  33. Beiderwellen K, Gomez B, Buchbender C, et al. (2013) Depiction and characterization of liver lesions in whole body [18F]-FDG PET/MRI. Eur J Radiol 82:669–675

    Article  Google Scholar 

  34. Reiner CS, Stolzmann P, Husmann L, et al. (2014) Protocol requirements and diagnostic value of PET/MR imaging for liver metastasis detection. Eur J Nucl Med Mol Imaging 41:649–658

    Article  PubMed  Google Scholar 

  35. Wetter A, Nensa F, Schenck M, et al. (2014) Combined PET imaging and diffusion-weighted imaging of intermediate and high-risk primary prostate carcinomas with simultaneous [18F] choline PET/MRI. PLoS One 9:101571

    Article  Google Scholar 

  36. Hartenbach M, Hartenbach S, Bechtloff W, et al. (2014) Combined PET/MRI improves diagnostic accuracy in patients with prostate cancer: a prospective diagnostic trial. Clin Cancer Res 20:3244–3253

    Article  CAS  PubMed  Google Scholar 

  37. Wetter A, Lipponer C, Nensa F, et al. (2014) Quantitative evaluation of bone metastases from prostate cancer with simultaneous [18F] choline PET/MRI: combined SUV and ADC analysis. Ann Nucl Med 28:405–410

    Article  CAS  PubMed  Google Scholar 

  38. Wetter A, Lipponer C, Nensa F, et al. (2014) Evaluation of the PET component of simultaneous [(18)F]choline PET/MRI in prostate cancer: comparison with [(18)F]choline PET/CT. Eur J Nucl Med Mol Imaging 41:79–88

    Article  CAS  PubMed  Google Scholar 

  39. Wetter A, Lipponer C, Nensa F, et al. (2013) Simultaneous 18F choline positron emission tomography/magnetic resonance imaging of the prostate: initial results. Invest Radiol 48:256–262

    Article  PubMed  Google Scholar 

  40. Arce-Calisaya P, Souvatzoglou M, Eiber M, et al. (2013) Sensitivity of PET/MRI to detect recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 40:799

    Article  PubMed  Google Scholar 

  41. Paparo F, Piccardo A, Bacigalupo L, et al. (2015) Value of bimodal (18)F-choline-PET/MRI and trimodal (18)F-choline-PET/MRI/TRUS for the assessment of prostate cancer recurrence after radiation therapy and radical prostatectomy. Abdom Imaging. doi:10.1007/s00261-014-0345-0

    Google Scholar 

  42. Kitajima K, Suenaga Y, Ueno Y, et al. (2014) Value of fusion of PET and MRI in the detection of intra-pelvic recurrence of gynecological tumor: comparison with 18F-FDG contrast-enhanced PET/CT and pelvic MRI. Ann Nucl Med. 28:25–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Helmberger T, Martí-Bonmatí L, Pereira P, et al. (2013) Radiologists’ leading position in image-guided therapy. Insights Imaging 4:1–7

    Article  PubMed Central  PubMed  Google Scholar 

  44. Carlson SK, Bender CE, Classic KL, et al. (2001) Benefits and safety of CT fluoroscopy in interventional radiologic procedures. Radiology 219:515–520

    Article  CAS  PubMed  Google Scholar 

  45. Liu FY, Yu XL, Liang P, et al. (2012) Microwave ablation assisted by a real-time virtual navigation system for hepatocellular carcinoma undetectable by conventional ultrasonography. Eur J Radiol 81:1455–1459

    Article  PubMed  Google Scholar 

  46. Kobayashi K, Bhargava P, Raja S, et al. (2012) Image-guided biopsy: what the interventional radiologist needs to know about PET/CT. Radiographics 32:1483–1501

    Article  PubMed  Google Scholar 

  47. Tatli S, Gerbaudo VH, Mamede M, et al. (2010) Abdominal masses sampled at PET/CT-guided percutaneous biopsy: initial experience with registration of prior PET/CT images. Radiology 256:305–311

    Article  PubMed  Google Scholar 

  48. Tatli S, Gerbaudo VH, Feeley CM, et al. (2011) PET/CT-guided percutaneous biopsy of abdominal masses: initial experience. J Vasc Interv Radiol 22:507–514

    Article  PubMed  Google Scholar 

  49. Gupta S, Madoff DC (2007) Image-guided percutaneous needle biopsy in cancer diagnosis and staging. Tech Vasc Interv Radiol 10:88–101

    Article  PubMed  Google Scholar 

  50. Ewertsen C (2010) Image fusion between ultrasonography and CT, MRI or PET/CT for image guidance and intervention - a theoretical and clinical study. Dan Med Bull 57:4172

    Google Scholar 

  51. Ewertsen C, Henriksen BM, Torp-Pedersen S, Bachmann Nielsen M (2011) Characterization by biopsy or CEUS of liver lesions guided by image fusion between ultrasonography and CT, PET/CT or MRI. Ultraschall Med 32:191–197

    Article  CAS  PubMed  Google Scholar 

  52. Venkatesan AM, Kadoury S, Abi-Jaoudeh N, et al. (2011) Real-time FDG PET guidance during biopsies and radiofrequency ablation using multimodality fusion with electromagnetic navigation. Radiology 260:848–856

    Article  PubMed Central  PubMed  Google Scholar 

  53. Krücker J, Xu S, Venkatesan A, et al. (2011) Clinical utility of real-time fusion guidance for biopsy and ablation. J Vasc Interv Radiol 22:515–524

    Article  PubMed Central  PubMed  Google Scholar 

  54. de Rooij M, Hamoen EH, Fütterer JJ, Barentsz JO, Rovers MM (2014) Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. AJR Am J Roentgenol 202:343–351

    Article  PubMed  Google Scholar 

  55. Logan JK, Rais-Bahrami S, Turkbey B, et al. (2014) Current status of magnetic resonance imaging (MRI) and ultrasonography fusion software platforms for guidance of prostate biopsies. BJU Int 114:641–652

    Article  PubMed  Google Scholar 

  56. Marks L, Young S, Natarajan S (2013) MRI-ultrasound fusion for guidance of targeted prostate biopsy. Curr Opin Urol 23:43–50

    Article  PubMed Central  PubMed  Google Scholar 

  57. Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313:390–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Paparo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paparo, F., Piccardo, A., Bacigalupo, L. et al. Multimodality fusion imaging in abdominal and pelvic malignancies: current applications and future perspectives. Abdom Imaging 40, 2723–2737 (2015). https://doi.org/10.1007/s00261-015-0435-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-015-0435-7

Keywords

Navigation