Abstract
Aim
68Ga-RM2 is a bombesin (BBN) analog that targets the gastrin releasing peptide receptors (GRPR) overexpressed in many cancer cells, including prostate cancer (PC). It has been reported to successfully detect primary and recurrent PC. Here, we describe the distribution and range of physiological uptake of 68Ga-RM2 in 95 patients with biochemically recurrent (BCR) PC.
Materials and methods
Ninety-five participants had simultaneous PET/MRI for BCR PC and were prospectively enrolled in this study. Maximum standardized uptake value (SUVmax) and mean standardized uptake value (SUVmean) were measured in 24 normal anatomical structures for each participant. Three readers evaluated the images independently. Uptake in various normal tissues was classified into 4 different categories: no significant uptake if SUVmean was less than SUVmean of the aortic arch (AA); mild if SUVmean was less or equal to 2.5, but higher than SUVmean of the AA; moderate if SUVmean was higher than 2.5, but less or equal to 5; intense if SUVmean was higher than 5.
Results
The most intense uptake was observed in the urinary bladder, due to excretion of the radiotracer. No significant uptake was seen in the brain, salivary glands, lungs, myocardium, skeleton, muscles, and fat. Liver, spleen, and adrenal glands had mostly no significant uptake; the gastrointestinal tract had intense physiological uptake, with pancreas being the organ with the highest SUVmax measurements (average SUVmax 64.91). Mild and moderate uptake was measured in the esophagus (average SUVmax 3.99), while the stomach wall, duodenum, and rectum had mild uptake (average SUVmax 2.49, 3.42, and 3.58, respectively).
Conclusions
68Ga-RM2 has been mostly evaluated for PC detection, but it can be used for other tumors overexpressing GRPR such as breast cancer. This atlas of normal biodistribution and SUV measurements in healthy tissues will help physicians distinguish between physiological vs. pathological uptake, as well as potentially assist with planning future studies using GRPR targeting radiopharmaceuticals.



Similar content being viewed by others
References
Anastasi A, Erspamer V, Bucci M. Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia. 1971;27(2):166–7.
Jensen RT, Battey JF, Spindel ER, Benya RV. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev. 2008;60(1):1–42.
Sunday ME, Kaplan LM, Motoyama E, Chin WW, Spindel ER. Gastrin-releasing peptide (mammalian bombesin) gene expression in health and disease. Lab Investig. 1988;59(1):5–24.
Ananias HJ, van den Heuvel MC, Helfrich W, de Jong IJ. Expression of the gastrin-releasing peptide receptor, the prostate stem cell antigen and the prostate-specific membrane antigen in lymph node and bone metastases of prostate cancer. Prostate. 2009;69(10):1101–8.
Morgat C, Schollhammer R, Macgrogan G, Barthe N, Velasco V, Vimont D, et al. Comparison of the binding of the gastrin-releasing peptide receptor (GRP-R) antagonist 68Ga-RM2 and 18F-FDG in breast cancer samples. PLoS One. 2019;14(1):e0210905.
Mattei J, Achcar RD, Cano CH, Macedo BR, Meurer L, Batlle BS, et al. Gastrin-releasing peptide receptor expression in lung cancer. Arch Pathol Lab Med. 2014;138(1):98–104.
Rivera CA, Ahlberg NC, Taglia L, Kumar M, Blunier A, Benya RV. Expression of GRP and its receptor is associated with improved survival in patients with colon cancer. Clin Exp Metastasis. 2009;26(7):663–71.
Roivainen A, Kahkonen E, Luoto P, Borkowski S, Hofmann B, Jambor I, et al. Plasma pharmacokinetics, whole-body distribution, metabolism, and radiation dosimetry of 68Ga bombesin antagonist BAY 86-7548 in healthy men. J Nucl Med. 2013;54(6):867–72.
Minamimoto R, Sonni I, Hancock S, Vasanawala S, Loening A, Gambhir SS, et al. Prospective evaluation of (68)Ga-RM2 PET/MRI in patients with biochemical recurrence of prostate cancer and negative findings on conventional imaging. J Nucl Med. 2018;59(5):803–8.
Minamimoto R, Hancock S, Schneider B, Chin FT, Jamali M, Loening A, et al. Pilot comparison of (6)(8)Ga-RM2 PET and (6)(8)Ga-PSMA-11 PET in patients with biochemically recurrent prostate cancer. J Nucl Med. 2016;57(4):557–62.
Sunday ME. Cell-specific localization of neuropeptide gene expression: gastrin-releasing peptide or mammalian bombesin. Methods Neurosci. 1991;5:3–570.
Meignan M, Gallamini A, Meignan M, Gallamini A, Haioun C. Report on the first international workshop on interim-PET-scan in lymphoma. Leuk Lymphoma. 2009;50(8):1257–60.
Patz EF Jr, Lowe VJ, Hoffman JM, Paine SS, Burrowes P, Coleman RE, et al. Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology. 1993;188(2):487–90.
Wang Y, Chiu E, Rosenberg J, Gambhir SS. Standardized uptake value atlas: characterization of physiological 2-deoxy-2-[18F]fluoro-D-glucose uptake in normal tissues. Mol Imaging Biol. 2007;9(2):83–90.
Moody TW, Pert CB, Rivier J, Brown MR. Bomebesin: specific binding to rat brain membranes. Proc Natl Acad Sci U S A. 1978;75(11):5372–6.
Wolf SS, Moody TW, O'Donohue TL, Zarbin MA, Kuhar MJ. Autoradiographic visualization of rat brain binding sites for bombesin-like peptides. Eur J Pharmacol. 1983;87(1):163–4.
Menegotto PR, da Costa Lopez PL, Souza BK, de Farias CB, Filippi-Chiela EC, Vieira IA, et al. Gastrin-releasing peptide receptor knockdown induces senescence in glioblastoma cells. Mol Neurobiol. 2017;54(2):888–94.
Dyrberg E, Hendel HW, Huynh THV, Klausen TW, Logager VB, Madsen C, et al. (68)Ga-PSMA-PET/CT in comparison with (18)F-fluoride-PET/CT and whole-body MRI for the detection of bone metastases in patients with prostate cancer: a prospective diagnostic accuracy study. Eur Radiol 2018.
Beer M, Montani M, Gerhardt J, Wild PJ, Hany TF, Hermanns T, et al. Profiling gastrin-releasing peptide receptor in prostate tissues: clinical implications and molecular correlates. Prostate. 2012;72(3):318–25.
Wangerin KA, Baratto L, Khalighi MM, Hope TA, Gulaka PK, Deller TW, et al. Clinical evaluation of 68Ga-PSMA-II and 68Ga-RM2 PET images reconstructed with an improved scatter correction algorithm. Am J Roentgenol. 2018;211(3):655–60.
Wehrli NE, Bural G, Houseni M, Alkhawaldeh K, Alavi A, Torigian DA. Determination of age-related changes in structure and function of skin, adipose tissue, and skeletal muscle with computed tomography, magnetic resonance imaging, and positron emission tomography. Semin Nucl Med. 2007;37(3):195–205.
Nock BA, Kaloudi A, Lymperis E, Giarika A, Kulkarni HR, Klette I, et al. Theranostic perspectives in prostate cancer with the gastrin-releasing peptide receptor antagonist NeoBOMB1: preclinical and first clinical results. J Nucl Med. 2017;58(1):75–80.
Acknowledgments
Life MI provided the precursor for synthesis of 68Ga-RM2.
Funding
This study was partially funded by the Department of Defense through an Impact Award (W81XWH-16-1-0604).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Lucia Baratto declares that she has no conflict of interest.
Heying Duan declares that she has no conflict of interest.
Riccardo Laudicella declares that he has no conflict of interest.
Akira Toriihara declares that she has no conflict of interest.
Negin Hatami declares that she has no conflict of interest.
Valentina Ferri declares that she has no conflict of interest.
Andrei Iagaru receives institutional research support from GE Healthcare, Advanced Accelerator Applications and Progenics Pharmaceuticals.
Ethical approval
All procedures performed in our study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Oncology – Genitourinary
Rights and permissions
About this article
Cite this article
Baratto, L., Duan, H., Laudicella, R. et al. Physiological 68Ga-RM2 uptake in patients with biochemically recurrent prostate cancer: an atlas of semi-quantitative measurements. Eur J Nucl Med Mol Imaging 47, 115–122 (2020). https://doi.org/10.1007/s00259-019-04503-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00259-019-04503-4