Skip to main content
Log in

18F-fluoromisonidazole positron emission tomography can predict pathological necrosis of brain tumors

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Tumor necrosis is one of the indicators of tumor aggressiveness. 18F-fluoromisonidazole (FMISO) is the most widely used positron emission tomography (PET) tracer to evaluate severe hypoxia in vivo. Because severe hypoxia causes necrosis, we hypothesized that intratumoral necrosis can be detected by FMISO PET in brain tumors regardless of their histopathology. We applied FMISO PET to various types of brain tumors before tumor resection and evaluated the correlation between histopathological necrosis and FMISO uptake.

Methods

This study included 59 brain tumor patients who underwent FMISO PET/computed tomography before any treatments. According to the pathological diagnosis, the brain tumors were divided into three groups: astrocytomas (group 1), neuroepithelial tumors except for astrocytomas (group 2), and others (group 3). Two experienced neuropathologists evaluated the presence of necrosis in consensus. FMISO uptake in the tumor was evaluated visually and semi-quantitatively using the tumor-to-normal cerebellum ratio (TNR).

Results

In visual analyses, 26/27 cases in the FMISO-positive group presented with necrosis, whereas 28/32 cases in the FMISO-negative group did not show necrosis. Mean TNRs with and without necrosis were 3.49 ± 0.97 and 1.43 ± 0.42 (p < 0.00001) in group 1, 2.91 ± 0.83 and 1.44 ± 0.20 (p < 0.005) in group 2, and 2.63 ± 1.16 and 1.35 ± 0.23 (p < 0.05) in group 3, respectively. Using a cut-off value of TNR = 1.67, which was calculated by normal reference regions of interest, we could predict necrosis with sensitivity, specificity, and accuracy of 96.7, 93.1, and 94.9 %, respectively.

Conclusions

FMISO uptake within the lesion indicated the presence of histological micro-necrosis. When we used a TNR of 1.67 as the cut-off value, intratumoral micro-necrosis was sufficiently predictable. Because the presence of necrosis implies a poor prognosis, our results suggest that FMISO PET could provide important information for treatment decisions or surgical strategies of any type of brain tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moradi A, Semnani V, Djam H, Tajodini A, Zali AR, Ghaemi K, et al. Pathodiagnostic parameters for meningioma grading. J Clin Neurosci: Off J Neurosurg Soc Aust. 2008;15(12):1370–5. doi:10.1016/j.jocn.2007.12.005.

    Article  CAS  Google Scholar 

  2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109. doi:10.1007/s00401-007-0243-4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Miller CR, Dunham CP, Scheithauer BW, Perry A. Significance of necrosis in grading of oligodendroglial neoplasms: a clinicopathologic and genetic study of newly diagnosed high-grade gliomas. J Clin Oncol: Off J Am Soc Clin Oncol. 2006;24(34):5419–26. doi:10.1200/JCO.2006.08.1497.

    Article  Google Scholar 

  4. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95(2):190–8. doi:10.3171/jns.2001.95.2.0190.

    Article  CAS  PubMed  Google Scholar 

  5. Urtasun R, Band P, Chapman JD, Feldstein ML, Mielke B, Fryer C. Radiation and high-dose metronidazole in supratentorial glioblastomas. N Engl J Med. 1976;294(25):1364–7. doi:10.1056/NEJM197606172942503.

    Article  CAS  PubMed  Google Scholar 

  6. Dische S. Chemical sensitizers for hypoxic cells: a decade of experience in clinical radiotherapy. Radiother Oncol: J Eur Soc Ther Radiol Oncol. 1985;3(2):97–115.

    Article  CAS  Google Scholar 

  7. Van Os-Corby DJ, Koch CJ, Chapman JD. Is misonidazole binding to mouse tissues a measure of cellular pO2? Biochem Pharmacol. 1987;36(20):3487–94.

    Article  PubMed  Google Scholar 

  8. Rasey JS, Nelson NJ, Chin L, Evans ML, Grunbaum Z. Characteristics of the binding of labeled fluoromisonidazole in cells in vitro. Radiat Res. 1990;122(3):301–8.

    Article  CAS  PubMed  Google Scholar 

  9. Kavanagh MC, Sun A, Hu Q, Hill RP. Comparing techniques of measuring tumor hypoxia in different murine tumors: Eppendorf pO2 Histograph, [3H]misonidazole binding and paired survival assay. Radiat Res. 1996;145(4):491–500.

    Article  CAS  PubMed  Google Scholar 

  10. Piert M, Machulla H, Becker G, Stahlschmidt A, Patt M, Aldinger P, et al. Introducing fluorine-18 fluoromisonidazole positron emission tomography for the localisation and quantification of pig liver hypoxia. Eur J Nucl Med. 1999;26(2):95–109.

    Article  CAS  PubMed  Google Scholar 

  11. Piert M, Machulla HJ, Becker G, Aldinger P, Winter E, Bares R. Dependency of the [18F]fluoromisonidazole uptake on oxygen delivery and tissue oxygenation in the porcine liver. Nucl Med Biol. 2000;27(8):693–700.

    Article  CAS  PubMed  Google Scholar 

  12. Bentzen L, Keiding S, Horsman MR, Gronroos T, Hansen SB, Overgaard J. Assessment of hypoxia in experimental mice tumours by [18F]fluoromisonidazole PET and pO2 electrode measurements. Influence of tumour volume and carbogen breathing. Acta Oncol. 2002;41(3):304–12.

    Article  CAS  PubMed  Google Scholar 

  13. Hirata K, Terasaka S, Shiga T, Hattori N, Magota K, Kobayashi H, et al. (1)(8)F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas. Eur J Nucl Med Mol Imaging. 2012;39(5):760–70. doi:10.1007/s00259-011-2037-0.

    Article  CAS  PubMed  Google Scholar 

  14. Grunbaum Z, Freauff SJ, Krohn KA, Wilbur DS, Magee S, Rasey JS. Synthesis and characterization of congeners of misonidazole for imaging hypoxia. J Nucl Med: Off Publ Soc Nucl Med. 1987;28(1):68–75.

    CAS  Google Scholar 

  15. Thorwarth D, Eschmann SM, Paulsen F, Alber M. A kinetic model for dynamic [18F]-Fmiso PET data to analyse tumour hypoxia. Phys Med Biol. 2005;50(10):2209–24. doi:10.1088/0031-9155/50/10/002.

    Article  PubMed  Google Scholar 

  16. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med: Off Publ Soc Nucl Med. 2009;50 Suppl 1:122S–50. doi:10.2967/jnumed.108.057307.

    Article  CAS  Google Scholar 

  17. Kobayashi K, Hirata K, Yamaguchi S, Manabe O, Terasaka S, Kobayashi H, et al. Prognostic value of volume-based measurements on (11)C-methionine PET in glioma patients. Eur J Nucl Med Mol Imaging. 2015;42(7):1071–80. doi:10.1007/s00259-015-3046-1.

    Article  CAS  PubMed  Google Scholar 

  18. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinforma. 2011;12:77. doi:10.1186/1471-2105-12-77.

    Article  Google Scholar 

  19. Lee ST, Scott AM. Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole. Semin Nucl Med. 2007;37(6):451–61. doi:10.1053/j.semnuclmed.2007.07.001.

    Article  PubMed  Google Scholar 

  20. Bell C, Dowson N, Fay M, Thomas P, Puttick S, Gal Y, et al. Hypoxia imaging in gliomas with 18F-fluoromisonidazole PET: toward clinical translation. Semin Nucl Med. 2015;45(2):136–50. doi:10.1053/j.semnuclmed.2014.10.001.

    Article  PubMed  Google Scholar 

  21. Jenkins WT, Evans SM, Koch CJ. Hypoxia and necrosis in rat 9L glioma and Morris 7777 hepatoma tumors: comparative measurements using EF5 binding and the Eppendorf needle electrode. Int J Radiat Oncol Biol Phys. 2000;46(4):1005–17.

    Article  CAS  PubMed  Google Scholar 

  22. Yamaguchi S, Terasaka S, Kobayashi H, Asaoka K, Motegi H, Nishihara H, et al. Prognostic factors for survival in patients with high-grade meningioma and recurrence-risk stratification for application of radiotherapy. PLoS One. 2014;9(5), e97108. doi:10.1371/journal.pone.0097108.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Szeto MD, Chakraborty G, Hadley J, Rockne R, Muzi M, Alvord Jr EC, et al. Quantitative metrics of net proliferation and invasion link biological aggressiveness assessed by MRI with hypoxia assessed by FMISO-PET in newly diagnosed glioblastomas. Cancer Res. 2009;69(10):4502–9. doi:10.1158/0008-5472.CAN-08-3884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spence AM, Muzi M, Swanson KR, O’Sullivan F, Rockhill JK, Rajendran JG, et al. Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res: Off J Am Assoc Cancer Res. 2008;14(9):2623–30. doi:10.1158/1078-0432.CCR-07-4995.

    Article  CAS  Google Scholar 

  25. Swanson KR, Chakraborty G, Wang CH, Rockne R, Harpold HL, Muzi M, et al. Complementary but distinct roles for MRI and 18F-fluoromisonidazole PET in the assessment of human glioblastomas. J Nucl Med: Off Publ Soc Nucl Med. 2009;50(1):36–44. doi:10.2967/jnumed.108.055467.

    Article  Google Scholar 

  26. Kawai N, Lin W, Cao WD, Ogawa D, Miyake K, Haba R, et al. Correlation between 18F-fluoromisonidazole PET and expression of HIF-1alpha and VEGF in newly diagnosed and recurrent malignant gliomas. Eur J Nucl Med Mol Imaging. 2014;41(10):1870–8. doi:10.1007/s00259-014-2776-9.

    Article  CAS  PubMed  Google Scholar 

  27. Okamoto S, Shiga T, Yasuda K, Ito YM, Magota K, Kasai K, et al. High reproducibility of tumor hypoxia evaluated by 18F-fluoromisonidazole PET for head and neck cancer. J Nucl Med: Off Publ Soc Nucl Med. 2013;54(2):201–7. doi:10.2967/jnumed.112.109330.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the staff at the Departments of Nuclear Medicine, Molecular Imaging, Radiology, Neurosurgery, and Cancer Pathology of Hokkaido University Graduate School of Medicine, and Department of Surgical Pathology of Hokkaido University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Yamaguchi.

Ethics declarations

The authors declare that they have no conflict of interest. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toyonaga, T., Hirata, K., Yamaguchi, S. et al. 18F-fluoromisonidazole positron emission tomography can predict pathological necrosis of brain tumors. Eur J Nucl Med Mol Imaging 43, 1469–1476 (2016). https://doi.org/10.1007/s00259-016-3320-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-016-3320-x

Keywords

Navigation