Skip to main content

Advertisement

Log in

Bispecific antibody complex pre-targeting and targeted delivery of polymer drug conjugates for imaging and therapy in dual human mammary cancer xenografts

Targeted polymer drug conjugates for cancer diagnosis and therapy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Introduction

Doxorubicin, a frontline chemotherapeutic agent, limited by its cardiotoxicity and other tissue toxicities, was conjugated to N-terminal DTPA-modified polyglutamic acid (D-Dox-PGA) to produce polymer pro-drug conjugates. D-Dox-PGA or Tc-99 m labeled DTPA-succinyl-polylysine polymers (DSPL) were targeted to HER2-positive human mammary carcinoma (BT-474) in a double xenografted SCID mouse model also hosting HER2-negative human mammary carcinoma (BT-20).

Methods

After pretargeting with bispecific anti-HER2-affibody-anti-DTPA-Fab complexes (BAAC), anti-DTPA-Fab or only phosphate buffered saline, D-Dox-PGA or Tc-99 m DSPL were administered. Positive therapeutic control mice were injected with Dox alone at maximum tolerated dose (MTD).

Results

Only BT-474 lesions were visualized by gamma imaging with Tc-99 m-DSPL; BT-20 lesions were not. Therapeutic efficacy was equivalent in mice pretargeted with BAAC/targeted with D-Dox-PGA to mice treated only with doxorubicin. There was no total body weight (TBW) loss at three times the doxorubicin equivalent MTD with D-Dox-PGA, whereas mice treated with doxorubicin lost 10 % of TBW at 2 weeks and 16 % after the second MTD injection leading to death of all mice.

Conclusions

Our cancer imaging and pretargeted therapeutic approaches are highly target specific, delivering very high specific activity reagents that may result in the development of a novel theranostic application. HER/2 neu specific affibody-anti-DTPA-Fab bispecific antibody pretargeting of HER2 positive human mammary xenografts enabled exquisite targeting of polymers loaded with radioisotopes for molecular imaging and doxorubicin for effective therapy without the associating non-tumor normal tissue toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Why is early diagnosis important? “Let’s beat cancer sooner.” Cancer Research UK. www.cancerresearchuk.org.

  2. Breast cancer: early detection. The importance of finding breast cancer early. American Cancer Society. www.cancer.org/acs/groups/cid/documents/webcontent/003165-pdf.pdf.

  3. Le Doussal JM, Martin M, Gautherot E, Delaage M, Barbet J. In vitro and in vivo targeting of radiolabeled monovalent and divalent haptens with dual specificity monoclonal antibody conjugate: enhanced divalent hapten affinity for cell-bound antibody conjugate. J Nucl Med. 1989;30:1358–66.

    PubMed  Google Scholar 

  4. Le Doussal JM, Gruaz-Guyon, Martin M, Gautherot E, Delaage M, Barbet J. Targeting of Indium-111-labeled bivalent hapten to human melanoma by bispecific monoclonal antibody conjugates: imaging of tumors hosted in nude mice. Cancer Res. 1990;50:3445–52.

    PubMed  Google Scholar 

  5. Boerman O, Van Schaijk F, Oyen W, Corstens F. Pretargeted radioimmunotherapy of cancer: progress step by step. J Nucl Med. 2003;44:400–11.

    PubMed  Google Scholar 

  6. Goldenberg DM, Chatal JF, Barbet J, Boerman O, Sharkey R. Cancer imaging and therapy with bispecific antibody pretargeting. Cancer Ther. 2007;2:19–31.

    Google Scholar 

  7. Sharkey RM, Karacay H, Vallabhajosula S, McBride WJ, Rossi EA, Chang C, et al. Metastatic human colonic carcinoma: molecular imaging with pretargeted SPECT and PET in a mouse model. Radiology. 2008;246(2):497–507.

    Article  PubMed  Google Scholar 

  8. Gupta P, Goldenberg DM, Rossi EA, Chang CH. Multiple signaling pathways induced by hexavalent, monospecific, anti-CD20 and hexavalent, bispecific, anti-CD20/CD22 humanized antibodies correlate with enhanced toxicity to B-cell lymphomas and leukemias. Blood. 2010;116:3258–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Matsumura Y, Maeda H. A new concept for macromolecular therapies in cancer chemotherapy: mechanism of tumouritropic accumulation of proteins and the antitumour agent SMANCS. Cancer Res. 1986;6:6387–92.

    Google Scholar 

  10. Duncan R, Seymour LW, O’Hare KB, Flanagan PA, Wedge S, Hume IC, et al. Preclinical evaluation of polymer bound doxorubicin. J Control Release. 1992;19:331–46.

    Article  CAS  Google Scholar 

  11. Li C, Wallace S. Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev. 2008;60(80):886–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Khaw BA, Tekabe Y, Johnson L. Imaging experimental atherosclerotic lesions in ApoE knockout mice: enhanced targeting with Z2D3-anti-DTPA bispecific antibody and 99mTc-labeled negatively charged polymers. J Nucl Med. 2006;47:868–76.

    CAS  PubMed  Google Scholar 

  13. Gada K, Patil V, Panwar R, Majewski S, Tekabe Y, Khaw BA. Pretargeted gamma imaging of murine metastatic melanoma lung lesions with bispecific antibody and radiolabeled polymer drug conjugates. Nucl Med Commun. 2011;32:1231–40.

    Article  CAS  PubMed  Google Scholar 

  14. Karacay H, McBride WJ, Griffiths GL, Sharkey RM, Barbet J, Hansen HJ, et al. Experimental pretargeting studies of cancer with a humanized anti-CEA x murine ant-[In-DTPA] bispecific antibody construct and a 99mTc/188Re-labeleld peptide. Bioconjug Chem. 2000;11:842–54.

    Article  CAS  PubMed  Google Scholar 

  15. Patil V, Gada K, Panwar R, Varvarigou A, Majewski S, Weisenberger A, et al. Imaging small human prostate cancer xenografts after pretargeting with bispecific bombesin-antibody complexes and targeting with high specific radioactivity labeled polymer-drug-conjugates. EJNMMI. 2012;39:824–39.

    CAS  Google Scholar 

  16. Gada KS, Patil V, Panwar R, Hatefi A, Khaw BA. Bispecific antibody complex pretargeted delivery of polymer-drug-conjugates for cancer. Drug Deliv Transl Res. 2012;2:65–76.

    Article  CAS  Google Scholar 

  17. Patil V, Gada K, Panwar R, Majewski S, Tekabe Y, Varvarigou A, et al. In vitro demonstration of enhanced prostate cancer toxicity: pretargeting with bombesin bispecific complexes and targeting with polymer-drug-conjugates. J Drug Target. 2013;21(10):1012–21.

    Article  CAS  PubMed  Google Scholar 

  18. Orlova A, Magnusson M, Eriksson TL, Nilsson M, Larson B, Hoiden-Guthenberg I, et al. Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res. 2006;66:4339–48.

    Article  CAS  PubMed  Google Scholar 

  19. Bernatowicz MS, Matsueda GR. Preparation of peptide-protein immunogens using N-succinimidyl bromoacetate as a heterobifunctional crosslinking reagent. Anal Biochem. 1986;155:95–102.

    Article  CAS  PubMed  Google Scholar 

  20. Habeeb AFSA. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem. 1966;14:328–36.

    Article  CAS  PubMed  Google Scholar 

  21. Clinchy B, Gazdar A, Rabinovsky R, Yefenof E, Gordon B, Vitetta ES. The growth and metastasis of human, HER-2/neu-overexpressing tumor cell lines in male SCID mice. Breast Cancer Res Treat. 2000;61:217–28.

    Article  CAS  PubMed  Google Scholar 

  22. Hammond W, Tekabe Y, Johnson L, Majewski S, Popov V, Kross B, et al. Development of high performance mini gamma cameras based on LaBr3scintillator and H8500 and H9500 PSPMTs and their use in small animal studies. Medical Imaging Conference 2006.

  23. Euhus DM, Hudd C, LaRegina MC, Johnson FE. Tumor measurement in the nude mouse. J Surg Oncol. 1986;31:229–34.

    Article  CAS  PubMed  Google Scholar 

  24. Jensen MM, Jorgensen JT, Binderup T, Kjaer A. Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper. BMC Med Imaging. 2008;8:16–25.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Arnold RD, Slack JE, Straubinger RM. Quantification of Doxorubicin and metabolites in rat plasma and small volume tissue samples by liquid chromatography/electrospray tandem mass spectroscopy. J Chromatogr B. 2004;808:141–52.

    Article  CAS  Google Scholar 

  26. Von Hoff DD, Rozencweig M, Piccart M. The cardiotoxicity of anticancer agents. Semin Oncol. 1982;9:23–33.

    Google Scholar 

  27. Singal P, Iliskovic N, Li T, Kumar D. Adriamycin cardiomyopathy: pathophysiology and prevention. FASEB J. 1997;11:931–6.

    CAS  PubMed  Google Scholar 

  28. Injac R, Boskovic M, Perse M, Koprivec-Furlan E, Cerar A, Djordjevic A, et al. Acute doxorubicin nephrotoxicity in rats with malignant neoplasm can be successfully treated with fullerenol C60(OH)24 via suppression of oxidative stress. Pharmacol Rep. 2008;60:742–9.

    CAS  PubMed  Google Scholar 

  29. Bulucu F, Ocal R, Karadurmus N, Sahin M, Kenar L, Aydin A, et al. Effects of N-acetylcysteine, deferoxamine and selenium on doxorubicin-induced hepatotoxicity. Biol Trace Elem Res. 2009;132:184–96.

    Article  CAS  PubMed  Google Scholar 

  30. Perez P, Hoffman RW, Shaw S, Bluestone JA, Segal DM. Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. Nature. 1985;316:354–6.

    Article  CAS  PubMed  Google Scholar 

  31. Karacay H, Sharkey RM, McBride WJ, Rossi EA, Chang CH, Goldenberg DM. Optimization of Hapten-peptide labeling for pretargeted immune-PET of bispecific antibody using generated-produced 68Ga. J Nucl Med. 2001;52:555–9.

    Article  Google Scholar 

  32. Baumgarten AJ, Fiebig HH, Burger AM. Molecular analysis of xenografted models of human cancer cachexia: possibilities for therapeutic intervention. Cancer Genomics Proteomics. 2007;4:223–32.

    CAS  PubMed  Google Scholar 

  33. Mazzanti L, Breschi MC, Giovanni L, Bertelli AA. Fluorescence in sections of cardiac muscle from rats acutely treated with 4’-0-tetrahydropyranil-adriamycin hydrochloride (THP). Drugs Exp Clin Res. 1985;11(4):281–3.

    CAS  PubMed  Google Scholar 

Download references

Disclosure of potential conflicts of interest

B.A. Khaw is a co-founder of Akrivis Technologies, LLC. No potential conflicts of interest were disclosed by other co-authors.

Authors’ contributions

Concepts and design: B.A. Khaw, K. Gada, V. Patil, R. Panwar

Development of methodology: B.A. Khaw, K. Gada, V. Patil, R. Panwar, S. Mandapati

Acquisition of data: B.A. Khaw, K. Gada, V. Patil, R. Panwar, S. Mandapati

Analysis and interpretation of data: B.A. Khaw, K. Gada, V. Patil, R. Panwar

Writing, review and/or revision of the manuscript: B.A. Khaw, K. Gada, V. Patil, R. Panwar

Material support: A. Hatefi, S. Majewski, Andrew Weissenberger.

Grant support

This work was supported by B.A. Khaw’s unrestricted research account.

Financial support

Partial support from unrestricted grant from Gwathmey Inc., and Discretionary account of Dr. Khaw’s laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ban-An Khaw.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaw, BA., Gada, K.S., Patil, V. et al. Bispecific antibody complex pre-targeting and targeted delivery of polymer drug conjugates for imaging and therapy in dual human mammary cancer xenografts. Eur J Nucl Med Mol Imaging 41, 1603–1616 (2014). https://doi.org/10.1007/s00259-014-2738-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2738-2

Keywords

Navigation